1/2+1/4+1/8+1/16+1/32+1/64+1/128

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:42:31
1/2+1/4+1/8+1/16+1/32+1/64+1/128
xRN@~MlCK3x'ЀA 0 `Arq;S2tH'jP/m8YAy +]oPx.<R /& !AS

1/2+1/4+1/8+1/16+1/32+1/64+1/128
1/2+1/4+1/8+1/16+1/32+1/64+1/128

1/2+1/4+1/8+1/16+1/32+1/64+1/128
等比数列求和公式:Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
一共7项:1/2·(1-(1/2)^7)/(1-1/2)=127/128

答:这是等比数列求和问题,首项为1/2,公比为1/2
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=A1(1-q^n)/(1-q)
=(1/2)(1-1/2^n)/(1-1/2)
=1-1/2^n
=1-1/2^7
=1-1/128
=127/128

=64/128+32/128+16/128+8/128+4/128+2/128+1/128
=(64+32+16+8+4+2+1)/128
=127/128

64/128+32/128+16/128+8/128+4/128+1/128=125/128

用等比数列的求和公式就可以求出来。此题比较特殊,最后的结果等于:1-1/128=127/128,在往后加项那就等于1减去最后一项。