已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)单调递减,则w的取值范围是[1/2,5/4]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 23:51:04
已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)单调递减,则w的取值范围是[1/2,5/4]
x){}K t}6uC=tgMO# ~_6LzޯcfY-O=m-f6*67I*ҧM` k{'W<Ѐl6r}#0(Yfhh8 5HV?r';vE5^6-~aΥPˡ%``:^ t/Pyڻ hdw4M^ydg-vls R

已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)单调递减,则w的取值范围是[1/2,5/4]
已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)单调递减,则w的取值范围是
[1/2,5/4]

已知w>0,函数f(x)=sin(wx+π/4)在(π/2,π)单调递减,则w的取值范围是[1/2,5/4]
当x∈(π/2,π)时,wx+π/4∈(πw/2+π/4,πw+π/4)
而函数y=sinx的单调递减区间为[π/2,3π/2]
那么πw/2+π/4≥π/2,πw+π/4≤3π/2
所以1/2≤w≤5/4,即w的取值范围是[1/2,5/4]

为什么f(X)的减区间是二分之派到二分之三派