1、已知数列{an}的首项a1=2/3,a(n+1)=2an/(an+1),n=1,2,3…(1)证明:数列{(1/an)-1}是等比数列(2)求数列{n/an}的前n项和Sn2、数列{an}是等差数列,数列{bn}是等比数列,且它们的各项均为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:12:08
1、已知数列{an}的首项a1=2/3,a(n+1)=2an/(an+1),n=1,2,3…(1)证明:数列{(1/an)-1}是等比数列(2)求数列{n/an}的前n项和Sn2、数列{an}是等差数列,数列{bn}是等比数列,且它们的各项均为
xUN@tg3v;"OGzD!¡ -JU%b8Bs _-FE,[;C<7K0n ̴1KwOǍtK㐀KyNfN7 2/F+Sʼny$'IH\aגOS"qþ˟ϛp'=ZL|X2lt7}(jx'Cao%M/8Jըr<ݾH.wa ^ bçM&i7?!hޔ@=VȢ4O;F5G]Z7aҚYz &%&Fq7;,G A^D|=]̣._(-ŞD}F_D_{I(_?Pv3:qpTu<4L"eZΖ#:A&"em@W \mchX5g~gSW;!

1、已知数列{an}的首项a1=2/3,a(n+1)=2an/(an+1),n=1,2,3…(1)证明:数列{(1/an)-1}是等比数列(2)求数列{n/an}的前n项和Sn2、数列{an}是等差数列,数列{bn}是等比数列,且它们的各项均为
1、已知数列{an}的首项a1=2/3,a(n+1)=2an/(an+1),n=1,2,3…
(1)证明:数列{(1/an)-1}是等比数列
(2)求数列{n/an}的前n项和Sn
2、数列{an}是等差数列,数列{bn}是等比数列,且它们的各项均为正数,又a1=b1=1,a3+b5=21,a5+b3=13
(1)求{an},{bn}的通项公式【已求出an=2n-1,bn=2^(n-1)】
(2)求数列{an/2bn}的前n项和Sn

1、已知数列{an}的首项a1=2/3,a(n+1)=2an/(an+1),n=1,2,3…(1)证明:数列{(1/an)-1}是等比数列(2)求数列{n/an}的前n项和Sn2、数列{an}是等差数列,数列{bn}是等比数列,且它们的各项均为
1(1)
a(n+1)=(2an)/(an+1)
1/a(n+1)=(an+1)/2an=(1/2)*(1+1/an)
1/a(n+1)-1=(1/2)*(1/an-1)
所以{1/an-1}为等比数列!
(2)
{1/an-1}为等比数列!
首项为1/a1-1=1/2 公比为1/2
所以:1/an-1=1/2*(1/2)^(n-1)=1/2^n
1/an=1+1/2^n
bn=n/an=n*(1/an)=n*(1+1/2^n)=n+n/2^n
Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
其中:1+2+...+n=n*(n+1)/2
S=1/2+2/2^2+..+n/2^n
S/2=1/2^2+.+(n-1)/2^n+n/2^(n+1)
相减:S/2=1/2+1/2^2+.+1/2^n-n/2^(n+1)
=1-1/2^n-n/2^(n+1)
S=2-1/2^(n-1)-n/2^n
所以:Sn=1+1/2+2+2/2^2+..+n+n/2^n
=1+2+..+n+1/2+2/2^2+...+n/2^n
=n*(n+1)/2+2-1/2^(n-1)-n/2^n
21)
因为a3+b5=21,a5+b3=13,{an}是等差数列,{bn}是等比数列
所以a1+2d+b1*q^4=21,a1+4d+b1*q^2=13
因为a1=b1=1
所以2d+q^4=20,4d+q^2=12
2d+q^4=20方程乘以2得4d+2*q^4=40
用4d+2*q^4=40减去4d+q^2=12得2*q^4-q^2-28=0即(2*q^2+7)*(q^2-4)=0
所以2*q^2=-7或q^2=4
当2*q^2=-7时q^2=-3.5(不符合,舍去)
当q^2=4时q=2或-2
因为bn}是各项都为正数的等比数列
所以q=2
综上所述得q=2
带入4d+q^2得d=2
所以 an=2n-1
bn=2^(n-1)
(2)
an/bn=(2n-1)/2^(n-1) 叠加
a1/b1=1
a2/b2=3/2
……
sn=1+3/2+5/4+7/8+……(2n-1)/2^(n-1).(1)
2sn=2+3+……+(2n-1)/2^(n-2).(2)
(2)-(1),得 sn=6-(4n+6)/(2^n)