证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:36:34
证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4
x){ٌ̼8# MbC@S(@&6IEj/!" Vj2RiEUWdU.H)`]67R"^9 EFZ`qF qFZ0u]VЂiІUh$<;hۀ9:` # {0aHo ѬPo*$gj16 j 9LCTQǖ}Nrьg~Є-Mbv$f

证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4
证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4

证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4
sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)
=sin^2(x)+cos(x+30)[cos(x+30) +sinx]
=sin^2(x) + cos(x+30)(cosxcos30 -sinxsin30 +sinx)
=sin^2(x) + cos(x+30)(cosxcos30+1/2 *sinx)
=sin^2(x) + cos(x+30)(cosxcos30+sinxsin30)
=sin^2(x) +(cosxcos30-sinxsin30)(cosxcos30+sinxsin30)
=sin^2(x) +cos^2(x)*(cos30)^2 -(sin30)^2*sin^2(x)
=3/4 *cos^2(x)+sin^2(x)-1/4*sin^2(x)
=3/4 *cos^2(x)+3/4*sin^2(x)=3/4

∵sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)
=sin²x+(cosxcos30-sinxsin30)²+sinx(cosxcos30-sinxsin30)
=sin²x+(√3cosx/2-sinx/2)²+sinx(√3cosx/2-sinx/2)
=s...

全部展开

∵sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)
=sin²x+(cosxcos30-sinxsin30)²+sinx(cosxcos30-sinxsin30)
=sin²x+(√3cosx/2-sinx/2)²+sinx(√3cosx/2-sinx/2)
=sin²x+3cos²x/4-√3sinxcosx/2+sin²x/4+√3sinxcosx/2-sin²x/2
=3sin²x/4+3cos²x/4
=3(sin²x+cos²x)/4
=3/4
∴原命题成立。

收起