求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1题中的^2为平方.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:22:04
求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1题中的^2为平方.
x){{fg9j)']N/rE3X|VKѓlN="}2kn~ uG`(QQtbSTR Q R褉ӆHQILh:jiCN 6vպ`8iB)5j ca\](^ \* m @1 u

求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1题中的^2为平方.
求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1
题中的^2为平方.

求证:sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B=1题中的^2为平方.
sin^2A+sin^2B-sin^2Asin^2B+cos^2Acos^2B
=sin^2A+sin^2B+cos^2Acos^2B-sin^2Asin^2B
=sin^2A+sin^2B+(cosAcos2B-sinAsinB)(cosAcos2B+sinAsinB)
=sin^2A+sin^2B+cos(A+B)cos(A-B)
=(1-cos2A)/2+(1-cos2B)/2+cos(A+B)cos(A-B)
=-(cos2A+cos2B)/2+cos(A+B)cos(A-B)+1
=-2 cos[(2A+2B)/2] cos[(2A-2B)/2] /2+cos(A+B)cos(A-B)+1
=-cos(A+B)cos(A-B)+cos(A+B)cos(A-B)+1
=1