数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:57:32
x){6uӎr6Ԍ3vf!@혧ccMR>l((=Zyh#Mt
`A$M`>\#H.[-
W$փćݤIn]r]M[$Bmy`g\4醉.|{eMy>Ɏ:O7l|ѼOw9=a$ف 7L
数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
数列:A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)An,则An=?
A(n+1)^2+An^2+16=8[A(n+1)+An]+2A(n+1)*An
A(n+1)^2+A(n+2)^2+16=8[A(n+1)+A(n+2)]+2A(n+1)*A(n+2)
A(n+2)^2-An^2=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An)=8*(A(n+2)-An)+2A(n+1)*(A(n+2)-An)
(A(n+2)-An)*(A(n+2)+An-2A(n+1)-8)=0
A(n+2)-A(n+1)=A(n+1)-An+8
这题少条件,如果知道A1,就能得出An了……