证明e的x-1次方>x的n次方/n!x属于1到正无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:46:21
证明e的x-1次方>x的n次方/n!x属于1到正无穷
xTMo@+6x%!pT "7JZi GE)V(#4-* f*\y3f2N=8!-7x7eGib!o?gTM5$Ou$h@ IsvmK>20H"7%uwɭ+UHRm:4[X$*uyC߳ҩ34%f [Da¾TJ^bWՕ"i(Gw4I(tRsS"H 0Mh|$Fۍ=38%tbO(cb3&1wf@QKl!PʰGTdvWk(r$"ʇ5G ķ=^sZ'xqo4-Ȏlk?LI4~Sc-ۄ ƒNz_~ NNsx(Я v,12,heXF2O㼭\> [wp"lnu:h83hel=~F!46blvNL%ņ* c)Ve&?nq]㷎V;- ߬ۃ1[

证明e的x-1次方>x的n次方/n!x属于1到正无穷
证明e的x-1次方>x的n次方/n!x属于1到正无穷

证明e的x-1次方>x的n次方/n!x属于1到正无穷
e^(x-1) > (x^n)/n!
n=1
L.S = e^(x-1)
R.S = x
consider
f(x) = e^(x-1) - x
f'(x) = e^(x-1) - 1 > 0 ( for x ∈(1,+∞)
f(x) > f(1) = 0
=> f(x) >0
e^(x-1) > x
for n=1 is true
Assum n = k is true, ie
e^(x-1) > (x^k)/k!
for n = (k+1)
LS = e^(x-1)
RS = (x^(k+1))/(k+1)!
consider
g(x)= e^(x-1) - (x^(k+1))/(k+1)!
g'(x) = e^(x-1) - (k+1)x^k/(k+1)!
= e^(x-1) - x^k/k!
> e^(x-1) - e^(x-1) =0
g(x)> g(1) = 1 - 1/(k+1)! > 0
g(x) > 0
=> e^(x-1) > (x^(k+1))/(k+1)!
By MI, it is true for all n ∈N

1 当n=1时 e^(x-1)>x 因为对于函数f(x)= e^(x-1)-x,f'(x)=e^(x-1)-1, 当x>1时,f'(x)>0,所以当x>1时f(x)= e^(x-1)-x为增函数,f(1)=0 所以 当x>1时f(x)>0 e^(x-1)>x
2 设n=k时, e^(x-1)>x ^k/k!
因为x^k/k!-x^(k+1)/(k+1)!=x^k/k!-x^k/...

全部展开

1 当n=1时 e^(x-1)>x 因为对于函数f(x)= e^(x-1)-x,f'(x)=e^(x-1)-1, 当x>1时,f'(x)>0,所以当x>1时f(x)= e^(x-1)-x为增函数,f(1)=0 所以 当x>1时f(x)>0 e^(x-1)>x
2 设n=k时, e^(x-1)>x ^k/k!
因为x^k/k!-x^(k+1)/(k+1)!=x^k/k!-x^k/k![x/(k+1)]=x^k/k![1-x/(k+1)]=x^k/k![(k+1-x)/k+1)]
因为x可看作常数,当k足够大时必有k>x所以(k+1-x)/(k+1)>0,所以x^k/k!-x^(k+1)/(k+1)!>0,所以x^k/k!>x^(k+1)/(k+1)!所以 e^(x-1)>x^(k+1)/(k+1)!
所以当n=k+1时原式成立,所以 e^(x-1)>x ^n/n! n>=1,n是整数 x>1

收起