已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标(2)求使得f(c)=(4,5)的向量c坐标(3)对于任意向量a,b及常数m,n,证明:f(ma+nb)=mf(a)+nf(b)恒成立

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 21:05:56
已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标(2)求使得f(c)=(4,5)的向量c坐标(3)对于任意向量a,b及常数m,n,证明:f(ma+nb)=mf(a)+nf(b)恒成立
xRMO@+>*ku-bGVTȾa@J*-J !![IyᔿЙ];**qwg{3vjͺdF%Hb:$fNlG4]wrؗ(OZt8; 7gW8e(SF'.-xZGOl`9I Rei9Hh!vHuMe@}XȦ+[g6IB+B,Vl׼Ow\ qJ i6ܬ>N-̙-lNMڡ0O8#oaIhERDYa\ZyǠY ;89,v%gAB1!eȽt0DERjfTK@r::#'6` s/hGPyu%,4x JXQ&M6@a I R L

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标(2)求使得f(c)=(4,5)的向量c坐标(3)对于任意向量a,b及常数m,n,证明:f(ma+nb)=mf(a)+nf(b)恒成立
已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示
(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标
(2)求使得f(c)=(4,5)的向量c坐标
(3)对于任意向量a,b及常数m,n,证明:
f(ma+nb)=mf(a)+nf(b)恒成立

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标(2)求使得f(c)=(4,5)的向量c坐标(3)对于任意向量a,b及常数m,n,证明:f(ma+nb)=mf(a)+nf(b)恒成立
(1) f(a)=(1,1) f(b)=(0,-1)
(2)设c=(x,y)
∵f(c)=(y,2y-x)
∴y=4 2y-x=5 x=3
∴c=(3,4)
(3)设向量a=(x1,y1),向量b=(x2,y2) 则ma+nb=(mx1+nx2,my1+ny2)
又因为f(u)=v 此时的向量u=ma+nb=(mx1+nx2,my1+ny2) 所以v=(my1+ny2,2my1+2ny2-mx1-nx2)
f(a)=(y1,2y1-x1) 所以mf(a)=(my1,2my1-mx1)
f(b)=(y2,2y2-x2) 所以nf(b)=(ny2,2ny2-nx2)
mf(a)+nf(b)=(my1+ny2,2my1-mx1+2ny2-nx2)=f(ma+nb)
所以f(ma+nb)=mf(a)+nf(b)

已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示 求证:对于任意向量a已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示求证:对于任意向量a,b及常数m,n,恒有f(ma+nb)=mf(a)+nf(b)成立 已知向量u=(x,y)与向量v=(x+2y,tanx/2tany)的对应关系可用v=f(u)表示,已知向量u=(x,y)与向量v=(x+2y,tanx/2 tany)的对应关系可用v=f(u)表示,试问是否存在向量m=(α,β)(α,β∈(0,π/2) 使得f(m)=(2π/3,2-根号3 已知向量a=(x,y)与向量v=(x+2y,tanx/2·tany)的对应关系已知向量u=(x,y)与向量v=(x+2y,tanx/2 tany)的对应关系可用v=f(u)表示,试问是否存在向量m=(α,β)(α,β∈(0,π/2) 使得f(m)=(2π/3,2-根号3)成立?如果 已知向量a=1,向量b=1,=60°,向量x=2*向量a-向量b,向量y=3*向量b-向量a.求向量x与向量y夹角的余弦值. 已知向量u=(x,y)与v=(y,2y-x)的对应关系用v=f(u)表示.(1)a=(1,1),b=(1,0),求向量f(a)与f(b)的坐标(2)求使f(c)=(p,q)(p,q为常数)的向量c的坐标 已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标(2)求使得f(c)=(4,5)的向量c坐标(3)对于任意向量a,b及常数m,n,证明:f(ma+nb)=mf(a)+nf(b)恒成立 已知向量u=(x,y)与向量v=(y,2y-x)的对应关系用v=f(u)表示(1)证明:对于任意向量a、向量b及常数m、n,恒有f(ma+nb)=mf(a)+nf(b)成立;(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标;(3)求使得f 已知向量a=(1,2),向量b=(x,1),向量u=向量a+向量2b,向量v=向量2a-向量b,根据下列情况求x:(1)向量u//向量v.(2)向量u⊥向量v 漏掉的是:[向量v=(y,2y-x)] 1.已知向量a与向量b不平行,若实数x .y满足等式(2x+y-14)向量a+(x-3y)向量b=向量0则x=y= 平面向量a=(3,-4),b=(2,x),c=(2,Y).已知向量a平行于向量b,向量a垂直于向量c,求向量b,向量c及向量b与c的夹角. 已知向量OP与向量OQ关于y轴对称,且2向量OP.向量OQ=1求点P(x,y)的轨迹方程 若向量x,向量y满足2向量x+3向量y=向量a.3向量x-2向量y=向量b,向量a、向量b,则向量x,向量y为多少 1.设非零向量a,b不共线,向量c=ka+b,向量d=a+kb(k∈R),若c‖d,试求k.2.已知两单位向量a与b的夹角为120°,若c=2a-b,d=3b-a,试求c与d的夹角的余弦值.3.已知向量u=(x,y)与v=(y,2y-x)的对应关系用v=f(u)表示.(1) 已知向量a=(2,3),向量b=(1,2),若向量a*x-向量b*y与向量a-向量b*2共线,则y/x等于 已知向量a=(2,-1),向量b(-1,3),向量C(7,-11)且向量C等于x*向量a-y*向量b切实数x与y的值 已知2向量a-3向量b=20向量i-8向量j,-向量a+2向量b=-11向量i+5向量j 向量i、向量j是X Y轴正方向上的单位向量,求向量a与向量b的夹角 已知向量a=(1,2),b=(X,1),向量u=a+2b,向量v=2a-b,且u与v平形,求实数X的值