求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 04:33:01
求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2
x){F< M} Cb KKHE"pMےļ }#"}/KH] gaiTPld)Uk)D1BD=DՇpрRJIc +@-ԁ"@WaW BS"K^yvTf搞ʐ=r1!bB@ƒŤDCg,\h6N

求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2
求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2

求证(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)=tanx/2
(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=(2sin2xcos2x)/(1+2cos²2x-1)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=(2sin2xcos2x)/(2cos²2x)*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/cos2x*(cos2x)/(1+cos2x)*(cosx)/(1+cosx)
=2sin2x/(1+cos2x)*(cosx)/(1+cosx)
=2sinxcosx/(1+2cos²x-1)*(cosx)/(1+cosx)
=2sinxcosx/2cos²x*(cosx)/(1+cosx)
=sinx/cosx*(cosx)/(1+cosx)
=sinx/(1+cosx)
=(2sinx/2cosx/2)/(1+2cos²x/2-1)
=(2sinx/2cosx/2)/2cos²x/2
=(sinx/2)/cosx/2
=tanx/2

(sin4x)/(1+cos4x)*(cos2x)/(1+cos2x)*(cosx)/(1+cos)
=2sin2xcos2x/(2cos²2x)*cos2x/(2cos²x)*cosx/(2cos²x/2)
=sin2x/cos2x*cos2x/(2cos²x)*cosx/(2cos²x/2)
=2sinxcosx/(2cos²x)*cosx/(2cos²x/2)
=sinx/(2cos²x/2)
=2sinx/2cosx/2/(2cos²x/2)
=sinx/2/cosx/2
=tanx/2