在三角形中,已知sinA+sinC=psinB,p属于R且ac=1/4b方 若角B为锐角,p的范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 14:34:27
在三角形中,已知sinA+sinC=psinB,p属于R且ac=1/4b方 若角B为锐角,p的范围
xQMN@K%#qibh2L41!*hP cfZ\qߴ@z6^{sC_,^nQxMNx\8'NSr &7G«SFrhU&t݋l)7↾]a} ߗnXH[0UZahn[]s4T?GCs&=@+PL*~u&jߒ QTI<N)d/0&аIRfB#LYVby31m쮥R& NlE%qo({Bspt >h/R<n6Z 5by

在三角形中,已知sinA+sinC=psinB,p属于R且ac=1/4b方 若角B为锐角,p的范围
在三角形中,已知sinA+sinC=psinB,p属于R且ac=1/4b方 若角B为锐角,p的范围

在三角形中,已知sinA+sinC=psinB,p属于R且ac=1/4b方 若角B为锐角,p的范围
由正弦定理a/sinA=b/sinB=c/sinC及已知得
a+c=pb
因为a,b,c是三角形的三边
所以a+c>b
即p>1
由基本不等式:pb=a+c>=2√ac=2√(1/4b^2)=b
即p>=1
另外,由余弦定理:cosB=(a^2+c^2-b^2)/2ac
且角B是锐角,
得a^2+c^2-b^2>0
即(a+c)^2-2ac-b^2>0
p^2b^2-1/2b^2-b^2>0
p>√(3/2)=√6/2
综上,p的范围是(√6/2,正无穷)