1/1*3+1/3*5+1/5*7+.+1/99*101
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:24:26
xR[N@N[eJ؋. jx+B~?,RGw)~uޙ)H%Is3|)HJƐ4xkR*vQ%@sϦpdTZK4JAQuݵuյeN
C(`ى(DBSNȟ没4z,|Ee@U8-*TFW]c)I;(A2Y۲hiLfFp
cgM24S?ٕn&Y")[X7Up1՜y'J́VuͅE(SJ̘2K(2F>v%.y葁؟Mf2dvf6X"wK½)i-iQ7UϞm9_*u`s&*i
rW
1/1*3+1/3*5+1/5*7+.+1/99*101
1/1*3+1/3*5+1/5*7+.+1/99*101
1/1*3+1/3*5+1/5*7+.+1/99*101
1/1×3+1/3×5+1/5×7+…………+1/99×101
=1/2×﹙1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101﹚
=1/2×100/101
=50/101
1/1*3+1/3*5+1/5*7+。。。+1/99*101
=2×(1/1*3+1/3*5+1/5*7+。。。+1/99*101)÷2
=(2/1*3+2/3*5+2/5*7+......2/97*99+2/99*101)÷2
=(1-1/3+1/3-1/5+1/5-1/7+.......1/97-1/99+1/99-1/101)÷2
=(1-1/101)÷2
=100/101÷2
=50/101
答案是50/101,过程如下,观察分母的结构,可以看出分母是(2n-1)×(2n+1),n从1到50,
1/((2n-1)*(2n+1))=1/2(1/(2n-1)-1/(2n+1)),那么原式可以写成1/2(1-1/3+1/3-1/5+…+1/99-1/101)=1/2×100/101=50/101,这种因式分解的方法在数列的求和中经常用到,希望你能掌握
1-3+5-7+...
(1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简算(1+1/3+1/5+1/7)*(1/3+1/5+1/7+1/9)-(1+1/3+1/5+1/7+1/9)*(1/3+1/5+1/7) 简便计算
1/1*3+1/1*3*5+1/1*3*5*7+1/1*3*5*7*9-73/945
(1/3+1/5+1/7)*(1/5+1/7+1/9)-(1/3+1/5+1/7+1/9)*(1/5+1/7)=?
1/3+1/5+1/7+.+1/2n+1
1/1*3*5+1/3*5*7+1/5*7*9.+1/95*97*99
1/1×3+1/3×5+1/5×7+1/7×9.+1/2011×2013
简算:1/1*3+1/3*5+1/5*7+1/7*9+1/9*11
1/1*3+1/3*5+1/5*7+1/7*9+...1/17*19=
计算1/(1×3)+1/(3×5)+1/(5×7)+1/(7×9)+.+1/(19×21)
1/1×3+1/3×5+1/5×7+1/7×9+.+1/2013×2015
1/1*3+1/3*5+1/5*7+1/7*9+.+1/101*103
帮帮忙1/1*3+1/3*5+1/5*7+1/7*9+...1/99*101
1/1*3+1/3*5+1/5*7+1/7*9+1/49*51=
计算:1/1×3+1/3×5+1/5×7+1/7×9``````+1/2001×2003
(1*3)/1+(3*5)/1+(5*7)/1+(7*9)/1+(9*11)/1
1/1*3+1/3*5+1/5*7+1/7*9+1/9*11
(1*3)/1+(3*5)/1+(5*7)/1+(7*9)/1+(9*11)/1