求方程y''-(y')^2-yy'=0满足初始条件y(0)=1,y'(0)=-2的特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:56:48
求方程y''-(y')^2-yy'=0满足初始条件y(0)=1,y'(0)=-2的特解
xJ@_%Ha%n.y QPUdE%MbK5%~Wp*zig3̰]^E6CACSt|D晚LEdP@`gݣSw+m$;J#Czń:`NǦڈ4ʈ)(ODI>ţΟdrr-QIknaFM1Ld.\^($keDA"5-LkOӣK%P3zx Y

求方程y''-(y')^2-yy'=0满足初始条件y(0)=1,y'(0)=-2的特解
求方程y''-(y')^2-yy'=0满足初始条件y(0)=1,y'(0)=-2的特解

求方程y''-(y')^2-yy'=0满足初始条件y(0)=1,y'(0)=-2的特解
令p=y',则:y"=dp/dx=p*(dp/dy);
==> p*(dp/dy)-p^2-py=0
==> dp/dy-p=y
(下式中积分符号用$代替)
p=[y*exp($-dy)+C]*exp($dy)=C*exp(y)-y-1
==>y'=C*exp(y)-y-1
把y(0)=1,y'(0)=-2带入得:C=0
==> y'=-y-1 ==> y=C1*exp(-x)-1
y(0)=1带入上式得到:C1=2
综上: y=2exp(-x)-1