1/(1*2)+2/(1*2*3)+3/(1*2*3*4)+.+8/(1*2*3*4*5*6*7*8*9)=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:15:48
x)3026ZƚPeeeeeikoTO^;l~ΗZ.i>mӏ6T0t
ccuTDOHi{m
uA&[*jjX*jz6yv 2L
1/(1*2)+2/(1*2*3)+3/(1*2*3*4)+.+8/(1*2*3*4*5*6*7*8*9)=?
1/(1*2)+2/(1*2*3)+3/(1*2*3*4)+.+8/(1*2*3*4*5*6*7*8*9)=?
1/(1*2)+2/(1*2*3)+3/(1*2*3*4)+.+8/(1*2*3*4*5*6*7*8*9)=?
(1)预备知识:n/[(n+1)!]=[(n+1)-1]/[(n+1)!]=[1/n!]-[1/(n+1)!].(2)原式=1-(1/9!)=(9!-1)/9!.