/>
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:05:34
xTMoJ+V%ޙ=Fuߢ["1;.oCE]!HX CHU3MMl
Tgιs6^-MODQ$+WbaY/0//E*3LJplp H7$bAe AXh5Q
|#QsBB"ۿ5vRRZX0.V)XVQT!0`I-X3kI`Z c@-5
dVXbh{ZPb/<;WBZL k02B $Kji=s?^_;w{|iNt[{++XLO֚TaA&F-{6eCX5] n,k縚Ԃe1 UҲZ80;lq?ך`SrR)""f"
BԌ@
J#"IU!Ǩ2XM_LZLⱰ"&6Ƙ"1j
Kji'$j
/>
/>
/>
先翻译下
(1)
Solve the separable differential equation
dy/dt=8y^4
and find the particular solution satisfying the initial condition
y(0)=-6,y(t)=?
求微分方程dy/dt=8y^4的解并且找到满足初始条件y(0)=-6的特定的解.
(2)
Find the solution to the differential equation
dy/dt=y^2(6+t)
y=8whent=1
求微分方程dy/dt=y^2(6+t)的解当t=1时y=8.
solution:
(1)dy/dt=8y^4
[1/(8y^4)]dy=dt
-1/24*y^-3=t+C
Into the y(0)=-6 get C=6
so -1/(24y^3)=t+6
(2)dy/dt=y^2(6+t)
y^-2 dy=(6+t) dt
-y^-1=6t+1/2 t^2+C
y=8whent=1 get C=-53/8
so -1/y=6t+1/2 t^2-53/8