如图,在△ABC中,AB=AC=4,BC=1/2AB,P是边AC上的一个点,PD=2AP,并∠APD=∠ABC.联结DC并延长交边AB的延长线于点E.(1)求证:AD∥BC;(2)设AP=x,BE=y,求y关于x的函数解析式,并写出它的定义域;(3)联结BP,当△CDP与

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:49:15
如图,在△ABC中,AB=AC=4,BC=1/2AB,P是边AC上的一个点,PD=2AP,并∠APD=∠ABC.联结DC并延长交边AB的延长线于点E.(1)求证:AD∥BC;(2)设AP=x,BE=y,求y关于x的函数解析式,并写出它的定义域;(3)联结BP,当△CDP与
xU]OG++TFY<Zz?PU^lMpc$k&R%U˳[*UN.>30[3)I$T)=xD$QԼ"%YtT )$N&,DSɫRJQ9%V_Jᣰ %9RLHX+)tXϤ Jʑsb ,8 c}tw}VwibpI]PgQbԯ׺Gpw. Wݍx|ZkrPo{猵v Xwlwlg@隋;\ޙ5z=\9!r2gF"L[G91U >bIpG6Z, ҵ* @0s.xM7/.\qU%*vPA ykj?ϫlѲB6^ |XC^?;ֈ*&1Y N fu 1++@C@>N=]9~JNAZ`%Sxk b6a#@6"`SbzJ9(vu?-94+Bn˜i{UNiqr}v00u[Z YZ{umif$ni/BqK2+ZmF"̛ͭX}ex<~tÓzI[ e7F_//BG?Fl 2a7~YmݶdQb ?Bn"; 8dG(ƺT91Q]{D'~W.}o?,8~Sg<x jF  "]`Km7.#?

如图,在△ABC中,AB=AC=4,BC=1/2AB,P是边AC上的一个点,PD=2AP,并∠APD=∠ABC.联结DC并延长交边AB的延长线于点E.(1)求证:AD∥BC;(2)设AP=x,BE=y,求y关于x的函数解析式,并写出它的定义域;(3)联结BP,当△CDP与

如图,在△ABC中,AB=AC=4,BC=1/2AB,P是边AC上的一个点,PD=2AP,并∠APD=∠ABC.联结DC并延长交边AB的延长线于点E.
(1)求证:AD∥BC;
(2)设AP=x,BE=y,求y关于x的函数解析式,并写出它的定义域;
(3)联结BP,当△CDP与△CBE相似时,试判断BP与DE的位置关系,并说明理由.

如图,在△ABC中,AB=AC=4,BC=1/2AB,P是边AC上的一个点,PD=2AP,并∠APD=∠ABC.联结DC并延长交边AB的延长线于点E.(1)求证:AD∥BC;(2)设AP=x,BE=y,求y关于x的函数解析式,并写出它的定义域;(3)联结BP,当△CDP与
(1)证明:∵BC=1 /2 AB,AP=1/ 2 PD
∴BC/ AB =AP/ PD
又∵∠APD=∠ABC
∴△APD∽△ABC
∴∠DAP=∠ACB
∴AD∥BC.
∵AB=AC
∴∠ABC=∠ACB.
∴∠DAP=∠DPA,
∴AD=PD
∵AP=x
∴AD=2x
∵BC=1 /2 AB,AB=4,
∴BC=2.
∵AD∥BC
∴BE /AE =BC /AD ,即y/( y+4) =2 /2x
整理,得y关于x的函数解析式为y=4/( x-1)
定义域为1<x≤4
(3)平行.
证明:∵∠CPD=∠CBE,∠PCD>∠E,
∴当△CDP与△CBE相似时,∠PCD=∠BCE
∴BE/ BC =DP/ PC ,即y /2 =2x/( 4-x)
把y=4 /(x-1) 代入,整理得x²=4
∴x=2,x=-2(舍去)
∴y=4
∴AP=CP,AB=BE
∴BP∥CE
即BP∥DE.

证:
(1)2AP=PD, AC=2BC, ∠APD=∠ABC,
所以△ABC相似于△DAP,所以∠DAP=∠ACB,
所以AD∥BC
(2)AD∥BC,所以△EBC相似于△EAD
所以BE/EA=BC/AD
又BC=2,AP=x,AD=2x,AB=4,BE=y,带入上式
所以y/(y+4)=2/2x,即xy=y+4,即y=4/(x-1)

全部展开

证:
(1)2AP=PD, AC=2BC, ∠APD=∠ABC,
所以△ABC相似于△DAP,所以∠DAP=∠ACB,
所以AD∥BC
(2)AD∥BC,所以△EBC相似于△EAD
所以BE/EA=BC/AD
又BC=2,AP=x,AD=2x,AB=4,BE=y,带入上式
所以y/(y+4)=2/2x,即xy=y+4,即y=4/(x-1)
又DC的延长线要交AB延长线与E,所以AD>BC=2,即2x>2,即x>1
y=4/(x-1),x∈(1,4]
(3)△CDP与△CBE相似时,∠CPD =∠CBE , BC/PC=BE/PD
所以2/(4-x)=y/2x,所以y=4x/(4-x),又y=4/(x-1)
所以4x/(4-x)=4/(x-1),所以解出x=+2或x=-2,又x∈(1,4]
所以x=2,所以AP=PC=BC=2,PD=BE=4,所以△CDP与△CBE全等
所以此时BP平行于DE

收起