已知两个等差数列{an}与{bn}的前n项和分别是Sn和Tn,且Sn/Tn=(2n+1)/(3n+3),求a7/b7的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:23:53
已知两个等差数列{an}与{bn}的前n项和分别是Sn和Tn,且Sn/Tn=(2n+1)/(3n+3),求a7/b7的值
xQJ1.[SzLSaҟ@F("- Q*nN5;qIrrι&w}};w%막_<~<h;tONҟ?/=K(M,Vչe؀L4۾`df}Ff6 hﺾs?Z:ռ'! CAE_іou5g,( FL bPP7pfh!e 'MDm;LMdV$M3εjbndF(4F|K *kn_n;Qjfi.kZ "h^BP= 6B +%-

已知两个等差数列{an}与{bn}的前n项和分别是Sn和Tn,且Sn/Tn=(2n+1)/(3n+3),求a7/b7的值
已知两个等差数列{an}与{bn}的前n项和分别是Sn和Tn,且Sn/Tn=(2n+1)/(3n+3),求a7/b7的值

已知两个等差数列{an}与{bn}的前n项和分别是Sn和Tn,且Sn/Tn=(2n+1)/(3n+3),求a7/b7的值
因为Sn/Tn=(2n+1)/(3n+3) 所以S7/T7=15/24
因为数列an与bn均是等差数列
所以S13/T13=(a1+a2+a3+.+a11+a12+a13)/(b1+b2+b3+...+b11++b12+b13)
=(a1+a13+a2+a12+...+a6+a8+a7)/(b1+b13+b2+b12+...+b6+b8+b7)
=(2a7*6+a7)/(2b7+b7)=13a7/13b7=a7/b7=27/42=9/14
所以 a7/b7=9/14

令n=15得Sn/Tn=15(a1+a15)/2 /15((a1+a15)/2=2x15+1/3x15+2=31/47

已知两个等差数列{an}和{bn}的前n项和分别为An和Bn, 已知两个等差数列an和bn的前n项和分别为已知两个等差数列{an}和{bn}的前n项和分别是An和Bn,且An/Bn= (7n+45)/(n+3),则使得an/bn为整数的正整.为什么an/bn=An-1/Bn-1?这步不懂~ 已知两个等差数列an和bn的前n项和分别为an和bn,且an/bn=7n+45 +3,则使的ann为整数的正整数n的个数是 已知两个等差数列{An}{Bn}的前n项和分别为An,Bn,且An/Bn=(7n+45)/(n+3),使An/Bn为整数的正整数n的个数?请写出解答过程,谢谢!~ 已知两个等差数列{an}和{bn}的前n项分别为An和Bn,且An/Bn=7n+45/n+3,则使得an/bn为整数的正整数n的个数 已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn = (5n+63)/(n+3),则使得an / bn为整数的正整数n的个数是 已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An比Bn=7n+45比n+3,则an除以bn为正整数n的个数是多少 已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn=(7n+45)/(n+3),求使an/bn为正整数n的个数. 已知两个等差数列{an},{bn}的前n项的和分别为Sn,Tn.若Sn/Tn=(5n+3)/(2n-1).求an/bn 已知两个等差数列{an},{bn}的前n项和分别是Sn,Tn,若 Sn/Tn =(2n)/(3n+1),则 an/bn=______. 已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且An/Bn=(7n+1)/(4n+27),则an/bn=? 高中数学已知两个等差数列的前N 项和的比怎么求通项公式的比?等差数列{An}与等差数列{Bn}的前n项和分别为Tn与Sn,且Tn/Sn=2n/3n+1,求通项公式an与bn的比? 已知两个等差数列an和bn的前n项和分别为Sn,Tn ( 1)若Sn/Tn=(7n+2)/(n+3) 求an/bn 2)若an/bn已知两个等差数列an和bn的前n项和分别为Sn,Tn (1)若Sn/Tn=(7n+2)/(n+3) 求an/bn 2)若an/bn=(14n-5)/(2n+2) 已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,满足An/Bn=7n+1/4n+27,则a11/b10=? 已知两个等差数列{an}和{bn}的前n项和分别为An,Bn,且An/Bn=(3n-3)/(2n+3),则a6/b6= 已知两个等差数列{an}和{bn}的前n项和分别为An,Bn,且An/Bn=(2n+1)/(n+3),则a9/b8=求答案+思路 两个等差数列{an}{bn}的前n项和分别为An,Bn且An/Bn=(n-3)/(3n+1)则a6/b6 若两个等差数列{an}、{bn}的前n项和An、Bn,且满足An/Bn=(4n+2)/(5n-5),则a13/b13