101个连续的非零自然数的和是四个不同的质数的积,那么这个最小的和应该是多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 18:52:32
101个连续的非零自然数的和是四个不同的质数的积,那么这个最小的和应该是多少?
xR]N@>SiOހ; TbE%,Eb"A n[XKC63MUӚ,nNwjvv]YCe2dW}bY)97 ? -~ Q7)Q%u@\i?10ދmDu:!pSɛ&%ڱ0hi^^߀Vb<\I$Y7W ~v_lZyB,0<2prvGE[3!"B~3Q2>lO+r0X#HV<. uBu3oxB]`azw_2]7ۗX;x!?#x3HCvH)6:ڢM,N~X<

101个连续的非零自然数的和是四个不同的质数的积,那么这个最小的和应该是多少?
101个连续的非零自然数的和是四个不同的质数的积,那么这个最小的和应该是多少?

101个连续的非零自然数的和是四个不同的质数的积,那么这个最小的和应该是多少?
这个最小的和应该是6666.
设此101个连续的非零自然数,第1个数是N,则最末一个数是N + 100.
其和
= (N + N + 100)*101/2
= (N + 50)*101
因101是一个质数,要使(N + 50)*101是四个不同的质数的积,
则(N + 50)必是三个不同质数的积.且N + 50≥ 50
大于等于50且是三个不同质数的积的自然数,最小是66 =2×3×11
因此最小的N = 16,从16开始的这101个连续非零自然数的和 = 66*101 = 6666

第1个数是N
和= (N + N + 100)*101/2= (N + 50)*101
101是一个质数,则(N + 50)是三个不同质数的积。且N + 50 > 50
大于50且是三个不同质数的积的自然数,最小是66 =2×3×11
N = 66 - 50 = 16
从16开始的这101个连续非零自然数的和 = 66*101 = 6666