不等式证明x>0时,(x+1)ln(x+1/x)>1需要详细过程谢谢sorry,题目应该是(x+1)ln(1+1/x)>1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 06:36:19
不等式证明x>0时,(x+1)ln(x+1/x)>1需要详细过程谢谢sorry,题目应该是(x+1)ln(1+1/x)>1
xTn@ h#U"%~\ၪ*6QE&ܔX6N%b/tw3sRmj`'moGnv Mw`T52qh#z[gV4£+G d&WWZ+yZF1*MzލCJhv =йg~$ Bw(LD.1-Sa$m2E+@*F7`_pLo4hkxu2`ѱ^C25>wY+zYrTFӗQcZe]tWTןѬ@.+.M1bB~ sA 6yCc>xv0ܭ XV2c1d}<?>[mUd Sb?Pܭ5Zzѯ`0DDx٬+FX&

不等式证明x>0时,(x+1)ln(x+1/x)>1需要详细过程谢谢sorry,题目应该是(x+1)ln(1+1/x)>1
不等式证明x>0时,(x+1)ln(x+1/x)>1
需要详细过程谢谢
sorry,题目应该是(x+1)ln(1+1/x)>1

不等式证明x>0时,(x+1)ln(x+1/x)>1需要详细过程谢谢sorry,题目应该是(x+1)ln(1+1/x)>1
思路:
x>0时,(x+1)ln(x+1/x)>1可以变形:
(x+1)ln(x+1/x)>1
ln(x+1/x)>1/(x+1)
ln[(x+1)/x]>1/(x+1)
-ln[(x+1)/x]<-1/(x+1)
ln{[(x+1)/x]^-1}=ln[x/(x+1)]=ln[1-1/(x+1)]<-1/(x+1)
ln[1-1/(x+1)]+1/(x+1)<0
∴只要证明x>0时ln[1-1/(x+1)]+1/(x+1)<0恒成立就可以了
令t=1/(x+1)
则ln[1-1/(x+1)]+1/(x+1)=ln(1-t)+t
∵x>0
∴0<t<1
∴只要证明0<t<1时ln(1-t)+t<0恒成立就可以了
设函数f(t)=ln(1-t)+t,0<t<1
求导
f'(t)=-1/(1-t)+1=t/(t-1)
∵0<t<1
∴f'(t)<0
∴f(t)在(0,1)上是减函数
∴f(t)最大值小于f(0)
∴f(t)在(0,1)上所有值都小于f(0)
即f(t)<f(0)
ln(1-t)+t<ln(1-0)+0
∴ln(1-t)+t<0,(0<t<1)
∴ln[1-1/(x+1)]+1/(x+1)<0,(x>0)
∴x>0时,(x+1)ln(x+1/x)>1

因为x+1/x的最小值为2,
所以(x+1)ln(x+1/x)的最小值为ln4>1,
所以(x+1)ln(x+1/x)>1