证明:当x>0时,e^x-1> (1+x)ln(1+x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:54:09
证明:当x>0时,e^x-1> (1+x)ln(1+x)
x){ٌ{f=;m:qv 9y`&HXv6$d4 M[.|S`FY*}; 3 u6<ٽa.}ﳩt%aF#dwߋkFw3z6yv uК

证明:当x>0时,e^x-1> (1+x)ln(1+x)
证明:当x>0时,e^x-1> (1+x)ln(1+x)

证明:当x>0时,e^x-1> (1+x)ln(1+x)
令f(x)=e^x-1- (1+x)ln(1+x)
f(0)=0
f'(x)=e^x- 1-ln(1+x)
f'(0)=0
f''(x)=e^x- 1/(1+x)>0 (x>0)
所以
f'(x)是增函数,所以
f'(x)>f'(0)=0 (x>0)
从而
f(x)是增函数,所以
f(x)>f(0) (x>0)

e^x-1> (1+x)ln(1+x).