1、 lim(n→∞)(1+3^n)^1/n=3,答案怎么出来的?2、f(x)=x/tanx,则x=π/2是f(x)的可去间断点,为什么?3、函数f(x,y)在点(0,0)的某领域内有定义,且fx(0,0)=3,fy(0,0)=-1,则有a、曲面z=f(x,y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:42:29
1、 lim(n→∞)(1+3^n)^1/n=3,答案怎么出来的?2、f(x)=x/tanx,则x=π/2是f(x)的可去间断点,为什么?3、函数f(x,y)在点(0,0)的某领域内有定义,且fx(0,0)=3,fy(0,0)=-1,则有a、曲面z=f(x,y)
xN1_%G38x )Ўb&)*DHI@ Br>NfWMB*btl?>\\o/FQ . rŃm EP!/vvn; @

1、 lim(n→∞)(1+3^n)^1/n=3,答案怎么出来的?2、f(x)=x/tanx,则x=π/2是f(x)的可去间断点,为什么?3、函数f(x,y)在点(0,0)的某领域内有定义,且fx(0,0)=3,fy(0,0)=-1,则有a、曲面z=f(x,y)
1、 lim(n→∞)(1+3^n)^1/n=3,答案怎么出来的?
2、f(x)=x/tanx,则x=π/2是f(x)的可去间断点,为什么?
3、函数f(x,y)在点(0,0)的某领域内有定义,且fx(0,0)=3,fy(0,0)=-1,则有
a、曲面z=f(x,y)在点(0,0,f(0))的一个法向量为3i-j-k
b、曲线z=f(x,y),y=0在点(0,0,f(0))的一个切向量为i+3k
为什么?

1、 lim(n→∞)(1+3^n)^1/n=3,答案怎么出来的?2、f(x)=x/tanx,则x=π/2是f(x)的可去间断点,为什么?3、函数f(x,y)在点(0,0)的某领域内有定义,且fx(0,0)=3,fy(0,0)=-1,则有a、曲面z=f(x,y)
1、 lim(n→∞)(1+3^n)^1/n
=lim(n→∞)(1+3^n)^1/n=3lim(n→∞)(1+(1/3)^n)^(1/n)=3 (提个3出来,1/3的n次方趋于0)
2、因为lim(x→π/2)x/tanx=0,所以x=π/2是f(x)的可去间断点
3、设F(x,y)=z-f(x,y),则:F‘x=-f'x,F‘y=-f'y,F‘z=1
那么:F‘x(0,0,f(0,0))=-3,F‘y(0,0,f(0,0))=1,F‘z(0,0,f(0,0))=1
所以:a、曲面z=f(x,y)在点(0,0,f(0))的一个法向量为(-3,1,1)或者是:3i-j-k
b、曲线z=f(x,y),y=0,
在点(0,0,f(0))的一个切向量为-f'y*i+f'xk=i+3k