((1+sinθ-cosθ)/(1+sinθ-cosθ))+ cot(θ/2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:51:19
((1+sinθ-cosθ)/(1+sinθ-cosθ))+ cot(θ/2)
x10 E1!kܣ Hn,,,l+8M[U T)MQ{LrI^:Z{Ymo J?3kW.+HouRsHx"Xi쀘qDr<r\#סҠ4[z4E  0-+10lG2+Pu#mi "

((1+sinθ-cosθ)/(1+sinθ-cosθ))+ cot(θ/2)
((1+sinθ-cosθ)/(1+sinθ-cosθ))+ cot(θ/2)

((1+sinθ-cosθ)/(1+sinθ-cosθ))+ cot(θ/2)
(1)令t=tan (θ/2)由万能公式sinθ=(2t)/(t^2+1) cosθ=(t^2-1)/(t^2+1)原式=(t^2+1+2t-t^2+1)/(t^2+1+2t+t^2-1)=(2t+2)/(2t^2+2t)=1/t=cot (θ/2)(2)令t=tan(3a/2) tan 3a=(2t)/(1-t^2)原式=t*(2t)/(1-t^2)+1=(2t^2+1-t^2)/(1-t^2)=(1+t^2)/(1-t^2)由万能公式 (1+t^2)/(1-t^2)=-1/cos(3a)=-sec(3a)