高数散度定理的一个问题Let the surface n be the paraboloid z = x² + y² capped by the disk x² + y² ≤ 1 in the plane z = 1.Verify the Divergence Theorem for F(x,y,z)= 2x i - yz j + z² k.大意猜也能猜出来,关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:32:56
高数散度定理的一个问题Let the surface n be the paraboloid z = x² + y² capped by the disk x² + y² ≤ 1 in the plane z = 1.Verify the Divergence Theorem for F(x,y,z)= 2x i - yz j + z² k.大意猜也能猜出来,关
xKK@ǿʀ 5({œjlMChGZ[E[})Q$IN g ;3ouIq1khTt.dM#P?@r.$^}PXimtu@$/I>) J𛢷S 6%C53d!l

高数散度定理的一个问题Let the surface n be the paraboloid z = x² + y² capped by the disk x² + y² ≤ 1 in the plane z = 1.Verify the Divergence Theorem for F(x,y,z)= 2x i - yz j + z² k.大意猜也能猜出来,关
高数散度定理的一个问题
Let the surface n be the paraboloid z = x² + y² capped by the disk x² + y² ≤ 1 in the plane z = 1.Verify the Divergence Theorem for F(x,y,z)= 2x i - yz j + z² k.
大意猜也能猜出来,关键是我2个方法做出来不一样.只要用 散度定理 把答案算出来就行了.我已经算的蛋碎了.
\2∫S\2∫ F · N dS 就是这个东西.

高数散度定理的一个问题Let the surface n be the paraboloid z = x² + y² capped by the disk x² + y² ≤ 1 in the plane z = 1.Verify the Divergence Theorem for F(x,y,z)= 2x i - yz j + z² k.大意猜也能猜出来,关
用散度定理(Gauss公式)时必须要补上平面M:z=1,x^2+y^2