高数-微分题微分方程xy′=2y有一个解是()A.y=2x B.y=2x^2+1 C.y=5x^2 D.y=5x^3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:47:13
高数-微分题微分方程xy′=2y有一个解是()A.y=2x B.y=2x^2+1 C.y=5x^2 D.y=5x^3
xQMO@+= 6x+$Dˑ6PF H "U٥.^yvB:h)T]tYT?ӶI8yC[vWB5asuxR \G(lqI$u"ĤBZG.*ej'LCBLJz,DYbY-b mg Nz1%cЊqUT3!GK5z8h!%jcNE$ gU8:A0{C?YtQ,D;kNZA̻=Z+Zr~N>\]Ti0!f#jHM u٥I,3ȤeOϲB

高数-微分题微分方程xy′=2y有一个解是()A.y=2x B.y=2x^2+1 C.y=5x^2 D.y=5x^3
高数-微分题
微分方程xy′=2y有一个解是()
A.y=2x B.y=2x^2+1 C.y=5x^2 D.y=5x^3

高数-微分题微分方程xy′=2y有一个解是()A.y=2x B.y=2x^2+1 C.y=5x^2 D.y=5x^3
选C
分离变量得:(1/y)dy=(2/x)dx
两端取积分得:ln|y|=2ln|x|+c(c为任意性常数)
即ln|y|=ln(x^2)+lnc(c和lnc是一个概念)(c为任意性常数)
即|y|=cx^2(c为任意性常数)
因为c的正负任意,所以y的绝对值可以去掉
所以y=cx^2(c为任意性常数)
所以选C

c
最快也是最简单的方法----代入验证 挨个选项代入 代c,等式左右两边相等,就它了