高等数学中的一致性连续与一致收敛性,怎么证明?比如,高等数学中证明f(x)=1/x,x属于(0,x],可以证明出f(x)在(0,x]上连续,但是不一致连续,怎么证明当f(x)在闭区间两个端点出极限存在,在开区

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:22:11
高等数学中的一致性连续与一致收敛性,怎么证明?比如,高等数学中证明f(x)=1/x,x属于(0,x],可以证明出f(x)在(0,x]上连续,但是不一致连续,怎么证明当f(x)在闭区间两个端点出极限存在,在开区
xTn@=RWH* Teaʣ@ @x$m!i14(1+~׾S A̙{=Ɉ;nj5T];9NakۆJ iܱ LE$֪u{Bc\ P?U2Gq@JuǎՂxN^&N^ĎcT4FWa0 ĔKƢUZmPxx=tK=w ŃUk"!?x\0yȢ³?D"w4r$pZm0X >WAf4J'e1

高等数学中的一致性连续与一致收敛性,怎么证明?比如,高等数学中证明f(x)=1/x,x属于(0,x],可以证明出f(x)在(0,x]上连续,但是不一致连续,怎么证明当f(x)在闭区间两个端点出极限存在,在开区
高等数学中的一致性连续与一致收敛性,怎么证明?
比如,高等数学中证明f(x)=1/x,x属于(0,x],可以证明出f(x)在(0,x]上连续,但是不一致连续,怎么证明当f(x)在闭区间两个端点出极限存在,在开区间中都连续,就是一致连续,可以想象到必定在闭区间一致连续,但是怎么使用极限和导数知识证明?

高等数学中的一致性连续与一致收敛性,怎么证明?比如,高等数学中证明f(x)=1/x,x属于(0,x],可以证明出f(x)在(0,x]上连续,但是不一致连续,怎么证明当f(x)在闭区间两个端点出极限存在,在开区
这个东西叫做Heine定理.
Heine定理说:假如一个函数f在一个闭区间里,两端有极限,中间连续,那么连续等价于一致连续.
Heine定理的假设里面没有用到f可导,所以我们并不需要导数的知识来证明.
有一定的拓扑知识(紧致性)以后可以给出一个非常短的证明,不过这里给的不假设我们知道这些知识.但是我们还是假设知道Bolzano-Weierstrass定理,这个定理说一个无穷数列在一个闭区间里可以找出一个子数列使得子数列收敛.
我们用反证法.
假如不是一致连续,根据定义我们可以说存在一个a>0,使得对于任意的e>0,都存在x,x'使得|x-x'|