求1/x^2-x-2展开为x-1的幂级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 15:21:07
求1/x^2-x-2展开为x-1的幂级数
xJ1_%Ǎ!D,]Ѓe=D(/v܋ { ^lJ}l[8IP*fIFq3IaS-W0`]}>zKSə(Xcid"jYJ 8Ӱ.2I;&t dv{!E"9цDX/pXR|]NxDⅽdI&SBQю65R8j_,?GA)X`|)̞aecO_o 7PmH*

求1/x^2-x-2展开为x-1的幂级数
求1/x^2-x-2展开为x-1的幂级数

求1/x^2-x-2展开为x-1的幂级数
f(x)=1/(x^2-x-2) = (1/3)[1/(x-2)-1/(x+1)]
= (-1/3)[1/(2-x)+1/(1+x)]
= (-1/3){1/[1-(x-1)]+1/[2+(x-1)]}
= (-1/3){1/[1-(x-1)]+(1/2)/[1+(x-1)/2]}
= (-1/3) ∑(x-1)^n - (1/6)∑(-1)^n*[(x-1)/2]^n
= (-1/3) ∑[1-(-1)^n/2^(n+1)](x-1)^n.
收敛域 -1

令t=x-1
x=t+1
将其带入原式
只需求t=0处的幂级数即可