设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:25:19
设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y)
xnA_e3 e[HV7 DMSR4ڂ Tmb ,\ ,B sw;Dx>IǼL+{ -dxCoY^\WͫƟ rD]GcGb_+ xF߲(4 LC __iUwa誡En#wSi !DTf^*0HAC:--a`^ muvI5Os6FH+n%Y%G@ 2*\͢m|ß[{VS/ֺIE1Smkܫpc#"moMrptn9H̫Z!GfqD*\& hSz*ͭVdޕ']ݪfOxBQBFuEQPހ܄F Ľl3)sz2e+]퐙,:s]B"i 1m:-m)rT$=Mz#F;1[3d0"ǼGe2.멢 ws6پ iۙ$vnuhi,klc_0k'?pIB4c9 ],ۖ

设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y)
设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y)

设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y)
注意:∫∫f(x,y)dxdy其实是一个常数,设a=∫∫f(x,y)dxdy
则:f(x,y)=[1-(x^2+y^2)]^0.5-πa/8
两边做二重积分得:
∫∫f(x,y)dxdy 积分区域为:x²+(y-1/2)²≤1/4,x≥0,圆的极坐标方程为:r=sinθ,θ:0--->π/2
=∫∫ {[1-(x^2+y^2)]^0.5-πa/8} dxdy
=∫∫ [1-(x^2+y^2)]^0.5dxdy-πa/8∫ dxdy
后一个被积函数为1,结果为区域面积,即半圆面积
=∫∫ [1-(x^2+y^2)]^0.5dxdy-(πa/8)*(1/2)*π(1/2)²
=∫∫ √(1-r²)*rdrdθ-(π²a/64)
=∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)*rdr-(π²a/64)
=1/2∫[0--->π/2]dθ∫[0--->sinθ] √(1-r²)d(r²)-(π²a/64)
=-(1/2)(2/3)∫[0--->π/2] (1-r²)^(3/2) |[0--->sinθ]dθ-(π²a/64)
=(1/3)∫[0--->π/2] (1-cos³θ) dθ-(π²a/64)
=(1/3)∫[0--->π/2] 1 dθ-(1/3)∫[0--->π/2] cos³θ dθ-(π²a/64)
=(1/3)(π/2)-(1/3)∫[0--->π/2] cos²θ d(sinθ)-(π²a/64)
=(1/3)(π/2)-(1/3)∫[0--->π/2] (1-sin²θ) d(sinθ)-(π²a/64)
=(1/3)(π/2)-(1/3)(sinθ-(1/3)sin³θ)-(π²a/64) |[0--->π/2]
=(π/6)-(1/3)(1-(1/3))-(π²a/64)
=(π/6)-(2/9)-(π²a/64)
因此:a=(π/6)-(2/9)-(π²a/64)
解得:a=[(π/6)-(2/9)]/[1+(π²/64)]=(32/9)*(3π-4)/(64+π²)
因此:f(x,y)=[1-(x^2+y^2)]^0.5-π/8*a
得:f(x,y)=[1-(x^2+y^2)]^0.5-(4π/9)*(3π-4)/(64+π²)
这么变态的结果,不知有没算错.

正确

设D:x^2+y^2=0,f(x,y)为D上的连续函数,且f(x,y)=[1-(x^2+y^2)]^0.5-∏/8*∫∫f(x,y)dxdy,求f(x,y) 设闭区域D:{(x,y)|x^2+y^2=0},f(x,y)为D上连续函数,且f(x,y)=(1-x^2-y^2)^1/2-8/πf(u,v)dudv 设随机变量X,Y的联合概率密度为f(x,y)=8e^(-2x-4y),x>0,y>0求E(2X-3Y),D(2X-3Y) 设随机变量(X,Y)的概率密度为f(x,y)={2-x-y,o 设随机变量(X,Y)的概率密度为f(x,y)={2-x-y,o 设随机变量(X,Y)的概率密度为f(x,y)={2-x-y,o 设f(x)的定义域为(-∞,+∞),且对任何X,Y都有f(x+y)+f(x-y)=2f(x)f(y),且f(x)≠0,证明f(x)为偶函数. 设f(x+y,x-y)=x^2-y^2,则f(x,y)= 设闭区域D:x^2+y^2≤a^2,f(x,y)为D上连续函数,且f(x,y)=√(a^2-x^2-y^2)+∫∫Df(u,v)dudv,求f(x,y) 设f(x,y)在闭区间D:x^2+y^20)1/R*二重积分D:f(x,y)d6=πf(0,0) 设二维随机变量(X,Y)的概率密度为f(x,y)=4.8y(2-x),0 设二维随机变量(X,Y)的概率密度为f(x,y)=2-x-y ,0 设二维随机变量(X,Y)的概率密度为f(x,y)= 2-x-y,0 设二维随机变量 x y 的概率密度为f(x,y)=3x,(x,y)∈D .D={(x,y)|0 设函数f(x)的定义域为R,且f(x)不等于0,当x>0,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).设函数f(x)的定义域为R,且f(x)不等于0,当x>0时,f(x)>1,对x,y属于R,有f(x+y)=f(x)f(y).(1)求证:f9x)>0(2)解不等式 f(x)≤ 1/f(x+1 设函数y=f(x)(定义域为D,值域为A)的反函数是y=f^-1(x)……设函数y=f(x)(定义域为D,值域为A)的反函数是y=f^-1(x),且函数y=f(x)在D上单调递增,证明:函数y=f^-1(x)在A上也是增函数(2)设函数y=f(x)是D上的 概率论没学好,此题求讲解~设二维连续型随机变量(X ,Y)在区域D={(x,y) l x>0,y>0,y=1-2x}上服从均匀分布,求:(X,Y)的联合分布函数依题意,可得其联合概率密度为:f(x,y)={4,(x,y)∈D0,其他由于f(x,y) 设f(x+y,x-y)=x^2+xy,求f(x,y)