f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:40:26
f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
xJA_%bq1!K`H/C;L> zgv:]Dt3sL,OK&b25 f" s![hZ_Q+/3_-Bx>n:'bFUNzI5QudQL2#u+o%^Na%([/¾] >5Lo0 D~դ`h~k7C^|@j8]zvYx ,4(I"+iK! )``NC/ jFx2l.ܪsHe)S~+kiox\H-'RifsC[eugv"S}7?<5իh. 5=c8}խv(6yv_;z,-Z

f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?

f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
f(x,y)=x^2-2xy^2+2y^4-2y^2
求一阶偏导:
∂f/∂x=2x-2y^2=0
∂f/∂y=-4xy+8y^3-4y=0
得:
x-y^2=0
xy-2y^3+y=0
再化简:
xy-y^3-y^3+y=0
y(x-y^2)-y^3+y=0
0+y(y^2-1)=0
y*(y-1)*(y+1)=0
解得:
y=±1,0
x= 1,0
即,可能极值点(稳定点)为P1=(1,-1),P2=(0,0),P3=(1,1)
再求二阶偏导数:
∂^2f/∂x^2=2 ∂^2f/∂x∂y=-4y
∂^2f/∂y∂x=-4y ∂^2f/∂y^2=-4x+24y^2-4
考虑Hesse矩阵的行列式:
detHf(P1)=16>0,A=∂^2f/∂x^2=2>0,取得极小值
detHf(P2)=-80,A=∂^2f/∂x^2=2>0,取得极小值
因此,f在(1,-1),(1,1)处能取得极小值,极值为1-2+2-2=-1
有不懂欢迎追问