f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:40:26
xJA_%bq1!K`H/C;L>
zgv:]Dt3sL,OK&b25
f"
s![hZ_Q+/3_-Bx>n:'bFUNzI5QudQL2#u+o%^Na%([/¾]>5Lo0 D~դ`h~k7C^|@j8]zvYx,4(I"+iK! )`` NC/jFx2l.ܪsHe)S~+kiox\H-'RifsC[ eugv"S}7?<5իh.5=c8}խv(6yv_;z,-Z
f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
f(x,y)=x^2-2xy^2+2y^4-2y^2是否有极值,如果有,极值为?
f(x,y)=x^2-2xy^2+2y^4-2y^2
求一阶偏导:
∂f/∂x=2x-2y^2=0
∂f/∂y=-4xy+8y^3-4y=0
得:
x-y^2=0
xy-2y^3+y=0
再化简:
xy-y^3-y^3+y=0
y(x-y^2)-y^3+y=0
0+y(y^2-1)=0
y*(y-1)*(y+1)=0
解得:
y=±1,0
x= 1,0
即,可能极值点(稳定点)为P1=(1,-1),P2=(0,0),P3=(1,1)
再求二阶偏导数:
∂^2f/∂x^2=2 ∂^2f/∂x∂y=-4y
∂^2f/∂y∂x=-4y ∂^2f/∂y^2=-4x+24y^2-4
考虑Hesse矩阵的行列式:
detHf(P1)=16>0,A=∂^2f/∂x^2=2>0,取得极小值
detHf(P2)=-80,A=∂^2f/∂x^2=2>0,取得极小值
因此,f在(1,-1),(1,1)处能取得极小值,极值为1-2+2-2=-1
有不懂欢迎追问
f(x+y)=f(x)+f(y)+2xy
f(xy,x-y)=x^2+y^2+xy;f(x,y)/∂x;f(x,y)/∂y
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
f(x+y,x-y)=2xy(x-y),求f(x,y)
f(xy,x-y)=x^2+3xy+y^2,则f(x,y)=?
f(xy,x-y)=x^2-xy+y^2.求f(x,y)
y'=-2xy;求f(x).
函数f(xy,x+y)=x^2+xy+y^2,则df(x,y)=?
设f(x+y,x-y)=x^2+xy,求f(x,y)
f(x^2-y^2,x-y)=x+y+x^2-xy,求f'(x,y)对y求导
设f(x+y,xy)=x^2+y^2-xy,则(∂f(x,y))/∂y=
f(2x+y,2y+x)=xy,求f(x,y)
设f(x+y,xy)=x^2+y^2,则f(x,y)
f(x+y)+f(xy-1)=f(x)f(y)+2f(n)表达式
设函数f(xy,x+y)=x^2+y^2+xy,求∂f(x,y)/∂x和∂f(x,y)/∂y
已知f(x+y)=f(x)+f(y)+2xy,求f(0)
y'=-2xy;求f(x).y'=2y/x+2;求y
高数题!f(x,y)=x^3-2xy+3y^2,求f(x+y,x-y).要借题步骤