如图,梯形 OABC 中,O 为直角坐标系的原点,A,B,C,的坐标分别为(14,0)(14,3)(4,3).点 P、Q 同时从原点出发,分别做匀速运动,点 P 沿 OA 以每秒 1 个单位终点 A 运动.点 Q 沿 OC、CB 以每秒 2 个单位

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 03:39:39
如图,梯形 OABC 中,O 为直角坐标系的原点,A,B,C,的坐标分别为(14,0)(14,3)(4,3).点 P、Q 同时从原点出发,分别做匀速运动,点 P 沿 OA 以每秒 1 个单位终点 A 运动.点 Q 沿 OC、CB 以每秒 2 个单位
xWRGJUʔFlRap!}4Mثll*B60l0rOh/陑xoǹnOO9^;̭&?bx=)U;whva͵I).%$;g\_orTJ+AjW f薄>%I뼐g7 7$G\3f]f2~UhuubdB± %Cb__#u1pD. __W\ q~b_5Z8Bxzhe oۋ"!d/gְ{vܵOũY`Hz2PAAgWEd)uDVN"S%ۇO([3^1 e}/gxh7̵UY^~ lZ{€nmBͰy0G h?xxfCTC}"$cۻ<UxE oE_"̟ |a.~W^DԨPدgY ^_=;WqIrIG¾S*Jiok5<Ax| *GQUIiiQ )6P18KKt:R=f,r(2׽0Mx0W'Y4 Q?du}"!2^PD[mE!ij- W3jlH i5ZEDw(K>sOD3^҄p]`8r!) SӤ= T7 *2j5^*K"U aO'U` .z| Ĕ<WbBp3~|adQBP2sYtW3rIlf+"PPFMψՃPLY揦^Ϯ"ó@N9'AU=|`?cF"1b?z:qgG%Vl_,)H$s\$"payDQC$?D٣ ĘtR'DţX2FGӍ7@wo"xDUƺpҮI['LbdJM{1Ůujᅮ_-10B/JE^[R8*0d5},iWY,V#'=`EbمNnK7Qx5;xuxSt`*Gq1bŹ_]r`J!+ơ >m8[#\5w nVgM&qNT/U4\VLU~و(hy&M^雰hU%}t,!GWKV{t0EXP ˣ,-,CѐB*xam[q*"&hi|M}@EI{$ :a#^]aȋ:aREe:x6o@uNl4'0t%y@

如图,梯形 OABC 中,O 为直角坐标系的原点,A,B,C,的坐标分别为(14,0)(14,3)(4,3).点 P、Q 同时从原点出发,分别做匀速运动,点 P 沿 OA 以每秒 1 个单位终点 A 运动.点 Q 沿 OC、CB 以每秒 2 个单位
如图,梯形 OABC 中,O 为直角坐标系的原点,
A,B,C,的坐标分别为(14,0)(14,3)(4,3).
点 P、Q 同时从原点出发,分别做匀速运动,
点 P 沿 OA 以每秒 1 个单位终点 A 运动.
点 Q 沿 OC、CB 以每秒 2 个单位向终点 B 运动.
当这两点中有一点到达自己的终点时另一点也停止运动.
(1)设从出发起运动了 x 秒,且 x>2.5 时,Q点的坐标.
(2)当等于多少时,四边形 OPQC 为平行四边形?
(3)四边形 OPQC 能否成为等腰梯形?说明理由.
(4)设四边形 opQc 的面积为 y .求出当 x>2.5 时 y 与 x 的函数关系式.并求出 y 的最大值.
= 有木有人写的我能完全懂啊?

如图,梯形 OABC 中,O 为直角坐标系的原点,A,B,C,的坐标分别为(14,0)(14,3)(4,3).点 P、Q 同时从原点出发,分别做匀速运动,点 P 沿 OA 以每秒 1 个单位终点 A 运动.点 Q 沿 OC、CB 以每秒 2 个单位
先求出各个点到终点需要的时间:
∵C(4,3),
∴OC= 根号下4的平方+3 的平方=5
∵B(14,3),
∴BC=14-4=10,
∴t(Q)=(5+14-4)/2
=15 /2
t(P)=14,
(1)由题意可知,当x>2.5时,Q点在CB上运动,
故横坐标为2x-5+4=2x-1,纵坐标为3,故坐标为(2x-1,3);
(2)由平行四边形的对边相等可知,2x-5=x,解得x=5;
(3)不能,OPQC成为等腰梯形的条件是P跑到Q的前面去,且x>2.5这时的Q和O关系为
p的横坐标-Q的横坐标=4,
于是列方程:1×x=4+2×(x-2.5),
解得X=1,不满足条件x>2.5(舍去),
故OPQC不能成为等腰梯形.
(4)当x>2.5时,四边形OPQC是一个梯形,所以:
y=3(2x-5+x) /2
=3(3x-5)/2
因为x最大为7.5,而根据上面的函数式知道y随x的增大而增大,
所以当x为最大时y为最大.
所以,y最大=3×(3×7.5-5 )/2=26.25.

一(1)∵OC经过原点且C(4,3)
易得直线OC方程式:yoc=4/3 x
∴Q在OC上的坐标为(t,4/3 t)
∵BC平行于x轴,且C的纵坐标为3
易得直线BC方程式:ybc=3
∴Q在BC上的坐标为(t,3)
(2)∵PQ∥OC,BC∥AO
∴Q在BC上,且CQ=OP=t
∵OC=√(3²+4²)=5

全部展开

一(1)∵OC经过原点且C(4,3)
易得直线OC方程式:yoc=4/3 x
∴Q在OC上的坐标为(t,4/3 t)
∵BC平行于x轴,且C的纵坐标为3
易得直线BC方程式:ybc=3
∴Q在BC上的坐标为(t,3)
(2)∵PQ∥OC,BC∥AO
∴Q在BC上,且CQ=OP=t
∵OC=√(3²+4²)=5
∴由Q所走的路程得 5+t=2t,t=5
∴当t=5时,PQ∥OC
二、(1)设Q的速度为a,则有 t+at=1/2 ×(10+14+5+3)=16
∴t(1+a)=16,
路程at=16-t,速度a=16/t-1
(2)不可能,理由如下
梯形AOCB面积的一半=(10+14)× 3 × 1/2 × 1/2=18
当Q在OC上时,Q的纵坐标为:(16-t)sin∠AOC=(16-t)×3/5=(48-3t)/5
∴QOP三点围成的面积S=(48-3t)/5 × t ×1/2= -3/10 t² + 24/5 t= -0.3(t-8)² + 19.2
∵此时 0≤ 16-t ≤5,且0≤t≤14
∴11≤t≤14 ∴当t=11时,S取最大值,S=16.5<18(不符题意)
当Q在BC上时,S=(16-t-5+t)× 3 × 1/2 =16.5<18(不符题意)
∴直线PQ不能同时把梯形OABC的面积也分成相等的两部分

收起

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB//OA,OC=AB=4,BC=6,角COA=45度,动点P从点O出发,在梯形OABC的边上运动,路径为O到A到B到C,到达点C时停止.作直线CP(1)求梯形OABC的面积(2)当直线CP把 如图,在直角梯形OABC中,AB//OC,O为坐标图原点,点A在y周正半轴上,点C在x轴正 如图,在梯形OABC中,O为直角坐标系中的原点,A、B、C的坐标分别是(14,0)、(14,3)、(4,3). 如图,梯形OABC中,O为直角坐标系的原点,A,B,C的坐标分别为(14,0),(14,3),(4,3).点P,Q同时从原点出发,分别如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q 如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴.如图,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A,C分别在x轴,y轴的正半轴上,CB∥OA,OC=4,BC=3,OA=5, 如图,梯形OABC中,AB平行OC,OA=AB=BC=2,∠B=120°,顶点O在坐标原点,顶点C在X轴上,将梯形OABC绕原点逆时针旋75°至梯形OA`B`C` 的位置,则点B`的坐标为 在平面直角坐标中,边长为2的正方形OABC的两顶点A,C分别在y轴,x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转α(0°<α<45°),AB边交直线y=x于点M,BC边交x轴于点N(如图). 如图 等腰梯形OABC的四个顶点分别为O(0,0),A(-√3,√3),C(-3√3,0)(1)求等腰梯形OABC的面积(2)将这个 如图,直角梯形OABC中,O为坐标原点,OA=Oc,点C得坐标(0,8),以b为顶点的抛物线y=ax²+bx+c过A,求解析式 如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(13,0),B(11,12),动点P、Q分别从O、B两点如图,在直角梯形OABC中, OA‖CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出 初三数学问题.大神快来解答如图,梯形OABC中,OA平行CB,AB=OC,以o为坐标原点,OA所在的直线为x轴建立直角坐标系,将梯形OABC沿着DE翻折,使点O与点B重合,已知BD垂直OA于D,OA=9,BC=3抛物线y=ax平方+bx+c经过 .(09湖南怀化)如图,在直角梯形OABC中,OA‖CB,A、B两点的坐标分别为A(15,0),B(10,12).(09湖南怀化)如图,在直角梯形OABC中,OA‖CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O 请解答如图,在平面直角坐标系中,直角梯形ABCO如图,在平面直角坐标系中,直角梯形ABCO,BC平行OA,顶点A的坐标为(6,0)BC=2/3OA,四边形OABC的面积为20(1)求直线AB的解析式.(2)点P从O出发,以每秒1 如图,在平面直角坐标系中,直角梯形ABCO如图,在平面直角坐标系中,直角梯形ABCO,BC平行OA,顶点A的坐标为(6,0)BC=2/3OA,四边形OABC的面积为20(1)求直线AB的解析式.(2)点P从O出发,以每秒1个单位 如图,吧矩形OABC放置在直角坐标中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得到折痕EF.①求点E的坐标;②若直线L把矩形OABC的面积分成相等的两部分,则直线L必经过点的坐标( ,). 已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M 交OC于D、E,连结AD、BD、BE.(2)直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系(如图2),若抛物线y=ax2-2ax-3a(a<0)经过 四边形OABC是等腰梯形,OA∥BC,在建立如图的平面直角坐标系中四边形OABC是等腰梯形,OA‖BC,在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒3个单位的速度从终点A运动;同时点N从B点 如图,在平面直角坐标系XOY中,直角梯形OABC,BC平行AO,A(-2,0),B(-1,1,将直角梯形OABC绕O顺时针旋转90度后,点A、B,C分别落在A',B',C'处.请你回答下列问题:(1)在如图直角坐标系XOY中画出旋转后的