y=3x²+2x y=-3x²+6x-2 怎么化成y=a(x-h)²+k并求顶点坐标 对称轴以及最值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:45:49
xJ@_% HC&&}B= $PmjDVPEmE)IMes+8ɦi&PPz/>넟ƚJ7×\t^$x*Q|PoRyt)"L\~ &@!"5=BPt\
{м|I½>,.Y͘-Kyap2Z<'1Vϵj=EG
y=3x²+2x y=-3x²+6x-2 怎么化成y=a(x-h)²+k并求顶点坐标 对称轴以及最值
y=3x²+2x y=-3x²+6x-2 怎么化成y=a(x-h)²+k
并求顶点坐标 对称轴以及最值
y=3x²+2x y=-3x²+6x-2 怎么化成y=a(x-h)²+k并求顶点坐标 对称轴以及最值
y=3(x²+2x/3)
=3(x²+2x/3+1/9-1/9)
=3(x²+2x/3+1/9)-1/3
=3(x+1/3)²-1/3
所以开口向上
对称轴是x=-1/3
顶点(-1/3,-1/3)
有最小值-1/3
y=-3x²+6x-2
=-3(x^2-2x+1)+1
=-3(x-1)^2+1,
抛物线,开口向下,对称轴为x=1
x=1时y=1,最大
定点坐标为(1,1)
答:
y=3x²+2x
y=3(x²+2x/3+1/9) -1/3
y=3(x+1/3)²-1/3
顶点(-1/3,-1/3),对称轴x=-1/3,最小值-1/3
y=-3x²+6x-2
y=-3(x²-2x+1)+3-2
y=-3(x-1)²+1
顶点(1,1),对称轴x=1,最大值1
y=3(x²+2x/3+1/9-1/9)
=3(x²+2x/3+1/9)-1/3
=3(x+1/3)²-1/3
所以对称轴x=-1/3,顶点(-1/3,-1/3)
最小-1/3
y=-3x²+6x-3+1
=-3(x-1)²+1
顶点(1,1),最大值是1
对称轴x=1
两个都马上采纳