椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:32:19
x){d9mjʆZOжt$3/
|>Ɏ%[=od.7C7#QOvt=];Ov4 etXfki PMR>/H>]7N P^(kk- 4
&ԩF@P6PH kz>{˓]}@e
nMȦd̺GKpsPm
PH/5TH}`@BOM1HH796yvX
椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
椭圆定义
PF1+PF2=2a
(PF1+PF2)²=4a²
(PF1)²+2PF1*PF2+(PF2)²=4a²
又PF1垂直于PF2
即 (F1F2)²=(PF1)²+(PF2)²=4c²
2PF1*PF2≤(PF1)²+(PF2)²
即 4a²≤ 4c²+4c²
a²≤2c²
2e²≥1 e∈(0,1)
解得√2/2 ≤e<1