椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 03:32:19
椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
x){d9mjʆZOжt$3/ |>Ɏ%[=od.7C7#QOvt=];Ov4e tXfkiPMR>/H>]7NP^(kk-4 &ԩF@P6PH kz>{˓]}@e nMȦd̺GKpsP m PH/5TH} `@BOM1HH796yvX

椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,

椭圆x²/a²+y²/b²=1(a>b>0)的两焦点为F1,F2,椭圆上存在一点p,是PF1⊥PF2,
椭圆定义
PF1+PF2=2a
(PF1+PF2)²=4a²
(PF1)²+2PF1*PF2+(PF2)²=4a²
又PF1垂直于PF2
即 (F1F2)²=(PF1)²+(PF2)²=4c²
2PF1*PF2≤(PF1)²+(PF2)²
即 4a²≤ 4c²+4c²
a²≤2c²
2e²≥1 e∈(0,1)
解得√2/2 ≤e<1