证明:对任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 06:31:39
证明:对任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)
x){ٌ{f=]Zjyv[MݐlN>24 5MR>5/{0El4%P`tL| X`\Ά'

证明:对任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)
证明:对任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)

证明:对任意的正整数n,有1/1*2*3+1/2*3*4+.+1/n(n+1)(n+2)
1/n(n+1)(n+2)
= 1/2 (2/n(n+1)(n+2) )
= 1/2 ( 1/n(n+1) - 1/(n+1)(n+2) )
= 1/2 ( 1/n - 1/(n+1) - 1/(n+1) +1/(n+2) )
所以,求和之后得到
1/2( 1/1 - 1/2 - 1/(n+1) +1/(n+2) )