设随机变量X的概率密度fx(x)=1/pi(1+x^2).试求Y=1-X^1/3的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:44:21
设随机变量X的概率密度fx(x)=1/pi(1+x^2).试求Y=1-X^1/3的概率密度
x){nYz?e{Y-ϖ5=keitq~AvEދSml5ԍ37FcTOs lh募mdG=O;ڞh~ھ @FmF-EE*55mu$ErNJ0 8ߠX\WQ 5_GQǼX.D *T 6ק<7×i ;f-2ҏ6Ԇ` 4٦drꁄI뚧{aO0/lb$`)+*la?ٽi4 ?ud'TkA75ԬxaN }@/<@O/.H̳%)bN

设随机变量X的概率密度fx(x)=1/pi(1+x^2).试求Y=1-X^1/3的概率密度
设随机变量X的概率密度fx(x)=1/pi(1+x^2).试求Y=1-X^1/3的概率密度

设随机变量X的概率密度fx(x)=1/pi(1+x^2).试求Y=1-X^1/3的概率密度
解法一:
分布函数法
F(y)=P(Y<=y)=P(1-X^1/3<=y)=P(X>=(1-y)^3)=∫fx(x)dx=∫1/pi(1+x^2)dx
F(y)=∫fx(x)dx=∫1/pi(1+x^2)dx=1/π*arctanx|[(1-y)^3,+∞]=1/2-arctan(1-y)^3/π
求导得概率密度
f(y)=1/π*3(1-y)^2/[1+(1-y)^6],-∞解法二
公式法
Y=1-X^1/3
X=(1-Y)^3
用x=(1-y)^3代入f(x),并乘以|x'|=|3*(1-y)^2*(-1)|
最后得到
f(y)=1/π*3(1-y)^2/[1+(1-y)^6],-∞解毕