如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证1 AM=AN 2 AM⊥AN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 20:47:29
如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证1 AM=AN 2 AM⊥AN
xTNA} NikXvoxmiUh QcIa᪯73޴3ߜ39ߜl[6]3kn.U'11jGQpj Lpzxe*`Nw;P? !/ᗁiKB{lw>H FSC.웤Bk4edkd\_$ޣ7-?ddN~iމ+J32"]=ԽXU GKjn2HQu/yGH#OIkJTWi݉N"SZ,J ^JKki7D5KN*=R;t/.X"a3AyUP.}|Eރ:!@.Tylڵ0,6k|aeb/K Q7#:iG8L&1Y,l*~'U lBg}kK3m,fe}qebU^^ǿAy9`~5AͶkZe?1/ϫU94ml)\-;/ak8//"0P_o uDسi4:ɔE.ͣp|){K+t86$f-0ars6 '6a@lriĦ" s *(K,pT` স7faW` @ RA) $!gc0`ZV[n1t$H٫H4 $O/"{

如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证1 AM=AN 2 AM⊥AN
如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB
求证1 AM=AN 2 AM⊥AN

如图,已知在△ABC中,BE,CF分别是AC,AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证1 AM=AN 2 AM⊥AN
1、
因为BE、CF为三角形ABC的高
所以∠ACN+∠BAC=90°,∠ABM+∠BAC=90°
所以∠ABM=∠ACN
又因为AB=CN,BM=AC,
所以△ABM≌△NCA(SAS)
所以AM=AN,
2、
因为△ABM≌△NCA(SAS)
所以∠BAM=∠CNA
因为∠CNA+∠NAF=90°
所以∠BAM+∠NAF=90°
即∠MAN=90°
(1)由两个直角和一组对角可知:∠1=∠2
又∵AB=CN BM=AC
∴△ACN全等于△MBA
∴AM=AN
(2)由(1)知∠N=∠BAM
∵∠N+∠NAB=90°
∴∠BAM+∠NAB=90°
即∠NAM=90°
∴AM⊥AN
分别对三角形AMB和ANC运用余弦定理
AM2=AB2+BM2-2AB×BMcos∠1 (1)
AN2=CN2+AC2-2CN×ACcos∠2 (2)
由BM=AC且 CN=AB (1)-(2)
得AM2-AN2=2AB×AC(cos∠2-cos∠1)
AM-AN=2AB×AC(cos∠2 -cos∠1)/(AM+AN)
又∠1 、∠2为锐角,
当∠1>∠2时,cos∠2 -cos∠1>0 AM>AN
当∠1=∠2时,cos∠2 -cos∠1=0 AM=AN
当∠1<∠2时,cos∠2 -cos∠1<0 AM<AN

如图 在锐角三角形ABC中,已知BE、CF分别是△ABC的高.说明△AEF∽△ABC 已知,如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG⊥EF 已知:如图,在△ABC中,BE,CF是高,D,G分别是BC,EF的中点.求证:DG⊥EF 如图,已知在△ABC中,BE,CF分别是高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,求证:AG 已知:如图,在△ABC中,BE、CF分别是AC、AB两条边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB, 已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB...已知,如图在△ABC中,BE、CF分别是AC、AB边上的高,在BE延长线上截取BM=AC,在CF延长线上截取CN=AB求证: 已知,如图,在平行四边形ABCD中,BE,CF分别是∠ABC和∠BCD的平分线,BE,CF相交于点O1求 BE⊥CF 2.AB=5,BC=8,求EF 已知:如图,在三角形ABC中,BE、CF是高,D、G分别是BC、EF的中点.求证:DG垂直EF 如图,已知在△ABC中,CF,BE分别是AB,AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC 已知,如图,在平行四边形ABCD中,BE.CF分别是∠ABC和∠BCD的平分线,BE.CF相交于点O,①求证;BE⊥CF②试判断AF与DE有何数量关系?说明理由③当△BOC为等腰直角三角形时,四边形ABCD是何特殊四边形有分 在△ABC中,已知AD、BE、CF分别是BC、CA、AB三边上的高,求AD、BE、CF三线共点. 已知,如图,在平行四边形ABCD中,BE,CF分别是∠ABC和∠BCD的平分线,BE,CF相交于点OAB=5,BC=8,求EF 已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,早DE上截取BD=AC,在CF的延长线上截取CG=AB,连接已知,如图,在△ABC中,BE、CE分别是AC、AB两边上的高,在DE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD 如图,在△ABC中,AD,BE,CF分别是三条中线,它们相交于点O)△AGF的面积和△AGE 如图 在△abc中,BE,CF分别是∠b ,∠c的平分线 求证:∠BPC=90°+½∠A 如图,在△ABC中,MN分别是BC与EF,CF⊥AB,BE⊥AC.试说明MN⊥EF 如图,在△ABC中,BE,CF分别是AC,AB边上的高,D是BC中点,M是EF中点,证明DM⊥EF 如图,在△ABC中,BE、CF分别是AC、AB边上的高,M是BC中点.求证:ME=MF不会做···