函数f(x)=sin(x+π/3)-asin(x-π/6的一条对称轴方程为x=π/2,则a=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 07:15:59
函数f(x)=sin(x+π/3)-asin(x-π/6的一条对称轴方程为x=π/2,则a=
x){ھ iřy5u] ';]t7ػٴWt?ٱHiD["}*_`gCm3GC6H;19с@!.:{~

函数f(x)=sin(x+π/3)-asin(x-π/6的一条对称轴方程为x=π/2,则a=
函数f(x)=sin(x+π/3)-asin(x-π/6的一条对称轴方程为x=π/2,则a=

函数f(x)=sin(x+π/3)-asin(x-π/6的一条对称轴方程为x=π/2,则a=
f(x)=sin(x+π/3)-asin(x-π/6)
=sin(x+π/3)-asin[(x+π/3)-π/2]
=sin(x+π/3)+acos(x+π/3),
因为函数图像的一条对称轴方程为 x=π/2 ,
因此 f(π/2)=√(1+a^2) 或 -√(1+a^2) ,
也即 1/2-√3/2*a=√(1+a^2) 或 1/2-√3/2*a= -√(1+a^2) ,
解得 a = -√3 .