求定积分f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx求解,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 04:17:20
求定积分f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx求解,
xQJ@|)ٿ&ٕ} 14Q&b҃|\{oPnB/zfc&Ui2 fXjMы㷗V/)s#[[H(]'Yin L2NBMxB?)%B"(TPA\!l꺘@ ژQ% ( ]]!]'Reg:Z+K׮8Y*9X0B!+j;B[2%̢[yƇe X!'-o.VSUeiXUa_ L,+`

求定积分f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx求解,
求定积分f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx求解,

求定积分f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx求解,

如下

f(x)=1+∫[1,1/3](arctan√x)/(√x+√(x^3)dx
=1+∫[1,1/3](arctan√x)/(√x+√(x^3)d(√x)^2
=1+∫[1,1/3]2(arctan√x)/(1+√x^2)d(√x)
=1+(arctan√x)^2|(1/3,1)
=1+(π^2/16-π^2/36)
=