求不定积分√(x^2+a^2)/x^2dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:43:03
求不定积分√(x^2+a^2)/x^2dx
xN@_e.̈́rrz$4Y[&a{#$jD\41ěxO]< NiE O3(_ylJe2 i n{V\؉%~#*AXtp&V;JVE1 ۘ@tdp+ &rs,RYFZĦMvK`E&BߌSBokTZ9YM'.zhĜ5JCM7\ &ҝD@U!Lz5ՑVA,z£bmZ̗psl10f'DsX l3StL./,_ܪDd5  *

求不定积分√(x^2+a^2)/x^2dx
求不定积分√(x^2+a^2)/x^2dx

求不定积分√(x^2+a^2)/x^2dx
x=a*tant,t=arctan(x/a),dx=a*(sect)^2 *dt
原积分=Sa*sect/(a *tant)^2 *a*(sect)^2 *dt
=S(sect)^3 /(tant)^2 *dt
=S1/(cost*(sint)^2) dt
=Scost/((sint)^2 *(1-(sint)^2)dt
=S1/((sint)^2*(1-(sint)^2))dsint
(y=sint)
=S1/(y^2*(1-y^2))dy
=1/2*S(1/(1-y)+1/(1+y)dy+S1/y^2 *dy
=1/2*ln(1+y)/(1-y)-1/y+c
=1/2*ln(1+sint)/(1-sint)-1/sint+c
=1/2*ln(1+x/根号(x^2+a^2))/(1-x/根号(x^2+a^2))-根号(x^2+a^2) /x+c
=1/2*ln(根号(x^2+a^2)+x)/(根号(x^2+a^2)-x)-根号(x^2+a^2) /x+c

=d(tant)/(tant)^3+d(tant)/tant =-1/[2(tant)^2]+ln(tant)+C asect=x,所以,tant=[根号(x^2-a^2)]/a 代入上式即可。