已知函数f(x)=x^3+ax²+c,且g(x)=f(x)-2是奇函数.a、c是多少?证明f(x)在区间【1,+∞】上单调递增间

来源:学生作业帮助网 编辑:作业帮 时间:2024/08/16 23:14:17
已知函数f(x)=x^3+ax²+c,且g(x)=f(x)-2是奇函数.a、c是多少?证明f(x)在区间【1,+∞】上单调递增间
xRJA\vGQ>D lABe\,EMB AL #1Qg'ݙAz^{{n(IV[ f>QŸH VC̴SN)!{.:)DM,z䭪6MgKr]Zt/ylWZ^Ih%9ދ`i@lx((ehuُD^Ey)T@U`*jXdLUСW{r%,v6‚B'ɂFĖb5vO=8K斅 #n[*5i٪P+2h(3{7& )JUn+q-22i00wC&E|.4b\zX Ρm9KDO4v

已知函数f(x)=x^3+ax²+c,且g(x)=f(x)-2是奇函数.a、c是多少?证明f(x)在区间【1,+∞】上单调递增间
已知函数f(x)=x^3+ax²+c,且g(x)=f(x)-2是奇函数.
a、c是多少?证明f(x)在区间【1,+∞】上单调递增间

已知函数f(x)=x^3+ax²+c,且g(x)=f(x)-2是奇函数.a、c是多少?证明f(x)在区间【1,+∞】上单调递增间
∵g(x)是奇函数
∴g(-x)=-g(x)
f(-x)-2=-[f(x)-2]
-x³+ax²+c-2=-x³-ax²-c+2
2ax²-2c+4=0
2a=0=>a=0
4-2c=0=>c=2
f(x)=x³+2
设有x1和x2,x2>x1≥1
f(x2)-f(x1)=(x2)³-(x1)³
=(x2-x1)[(x2)²+(x2)(x1)+(x1)²]
∵x2>x1
∴x2-x1>0
∴[(x2)²+(x2)(x1)+(x1)²]>0
=>f(x2)-f(x1)>0
∴f(x)在[1,+∞)上单调递增
如果是高数程度,可以用导数判断,过程快很多.
f(x)=x³+2
f'(x)=3x²
∵f'(1)=3(1)²=3>0,斜率为正
∴f(x)在区间[1,+∞)上单调递增