sin(x+y)=1,则tan(2x+y)+tany=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:44:19
sin(x+y)=1,则tan(2x+y)+tany=
x)+ӨЮԴ5y1$1O*mm /![C˦Ovv3 (``}AA|X

sin(x+y)=1,则tan(2x+y)+tany=
sin(x+y)=1,则tan(2x+y)+tany=

sin(x+y)=1,则tan(2x+y)+tany=
sin (x+y) =1
那么:x+y = 2kπ +π/2
tan(2x+y)+tany = tan [(x +y)+x] + tany
= tan( 2kπ +π/2 +x) +tan y
= tan (π/2 +x) + tan y
= tan(π/2 +x) + tan(2kπ +π/2 -x) (x+y = 2kπ +π/2)
= - cotx + cotx
=0