n趋向正无穷时,[(2n-1)!/(2n!)]的极限是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:12:50
x){鄉.~6}۟Mߦak5cjy6 fd
mժ_`gC/S(ӴES`ko`o$M̀DH&X{H1PDH+hATiBT,
6`@Zl<F 1= ȇ#
n趋向正无穷时,[(2n-1)!/(2n!)]的极限是多少?
n趋向正无穷时,[(2n-1)!/(2n!)]的极限是多少?
n趋向正无穷时,[(2n-1)!/(2n!)]的极限是多少?
设 u(n)=[(2n-1)!/(2n!)] =1/2 * 3/4 * 5/6 * .* (2n-1)/(2n)
x(n)= 2/3 * 4/5 * 6/7 *.* (2n)/(2n+1)
u(n)*u(n) < u(n)*x(n) = 1/(2n+1)
0∞] =0
n趋向正无穷时,[(2n-1)!/(2n!)]的极限是多少?
{[(1+n)(2+n)(3+n)……(n+n)]^(1/n)}/n当趋向正无穷 求其极限
求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷
求解lim((3^1/n+4^1/n)/2)^n n趋向正无穷.
(1+2^n+3^n)^(1/n) 其中n趋向于正无穷
求极限 lim (1+2+3+...+n/n+2-n/2)趋向是正无穷lim (1+2+3+...+n/(n+2)-n/2)趋向是正无穷
lim(2^n+3^n)^1
(n趋向无穷)
求极限 N趋向于正无穷时 1/(n^2+1^2)+2/(n^2+2^2)+3/(n^3+3^2)+...+n/(n^2+n^2)
用夹逼准则求lim(n趋向正无穷)(2n)!/(2n+1)!
求lim(-1+3^n)/2^(n+1)的极限(N趋向正无穷)
n次根号[1+x^(2n)]的极限(n趋向正无穷)
当n趋向于无穷时,求n^(1/2)*[n^(1/n)-1]的极限
极限运算:lim{[2^(2n+1)-8]/[4^(n+1)+3^n]}当n趋向正无穷,
当n趋向无穷时,1/(n^2+1)+2/(n^2+2)+.+n/(n^2+n)的极限是多少
求n趋向无穷时 [(1+1/n)(1+2/n)...(1+n/n)]^1/n 的极限?
在n趋向无穷时(n+1分之一+n+2分之2+.+n+n分之n)的极限
级数((1+i)/2)^n求和怎么办答案等于i,n趋向正无穷
求极限 n趋向无穷 2^n+1 + 3^n+1/2^n+3^n