求 (1)∫sin2xcos3x dx (2)∫cosx(cosx/2) dx(3)∫sin5xsin7x dx (4)∫cos²(wt+a)dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:36:05
求 (1)∫sin2xcos3x dx (2)∫cosx(cosx/2) dx(3)∫sin5xsin7x dx (4)∫cos²(wt+a)dt
xŔn1_Ʋ{rͅKJҢDJJU!Ԧ8P`w8۞ ػ3\6;>3M{Y> x,6ўT"}yiR@! G+34s[u>FA>5Rmو4WnT,PaPuNEBh+-=rׅsnIqǜ D {9B%o4sjzlard8Xa% /PS9c%֝ s iA:fLP ֪

求 (1)∫sin2xcos3x dx (2)∫cosx(cosx/2) dx(3)∫sin5xsin7x dx (4)∫cos²(wt+a)dt
求 (1)∫sin2xcos3x dx (2)∫cosx(cosx/2) dx(3)∫sin5xsin7x dx (4)∫cos²(wt+a)dt

求 (1)∫sin2xcos3x dx (2)∫cosx(cosx/2) dx(3)∫sin5xsin7x dx (4)∫cos²(wt+a)dt
(1):sin2x * cos3x = (1/2) * [sin(2x+3x) + sin(2x-3x)]
= (1/2) * [sin5x + sin(-x)]
= (1/2) * (sin5x - sinx)
∫ sin2x * cos3x dx
= (1/2)∫ (sin5x - sinx) dx
= (1/2) * [(-1/5)cos5x - (-cosx)] + c
= (1/10) * (5cosx - cos5x) + c
(2):cosx * cos(x/2) = (1/2) * [cos(x+x/2) + cos(x-x/2)]
= (1/2) * [cos(3x/2) + cos(x/2)]
∫ cosx * cos(x/2) dx
= (1/2)∫ [cos(3x/2) + cos(x/2)] dx
= (1/2) * [2/3*sin(3x/2) + 2sin(x/2)] + c
= sin(x/2) + (1/3)sin(3x/2) + c
(3):sin5x * sin7x = (1/2) * [cos(5x-7x) - cos(5x+7x)]
= (1/2) * [cos(-2x) - cos(12x)]
= (1/2) * (cos2x - cos12x)
∫ sin5x * sin7x dx
= (1/2)∫ (cos2x - cos12x) dx
= (1/2) * (1/2*sin2x - 1/12*sin12x) + c
= (1/4)sin2x - (1/24)sin12x + c
= (1/24) * (6sin2x - sin12x) + c
(4):cos²(a+wt) = (1/2) * {1 + cos[2(a+wt)]}
∫ cos²(a+wt) dt
= (1/2)∫ {1 + cos[2(a+wt)] dt
= (1/2)∫ dt + (1/2)∫ cos(2a+2wt) dt
= 1/2 * t + (1/2) * 1/(2w) * ∫ cos(2a+2wt) d(2a+2wt)
= t/2 + 1/(4w) * sin(2a+2wt) + c

前三题都是先用积化和差公式。第四题用倍角公式。然后积分。不会这个公式的,去百度搜。