已知x,y均为正数,且x>y,求证:2x+1/(x2-2xy+y2)>=2y+3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:58:26
x){}K+t*mc׳Mݠdǔ
Jg^o|gQFQEvQMR>eP
/ԮҨ3ЄcӾOz*HϨ
W
BkB7~m~@>mkx6fi@-$ف ߪT
已知x,y均为正数,且x>y,求证:2x+1/(x2-2xy+y2)>=2y+3
已知x,y均为正数,且x>y,求证:2x+1/(x2-2xy+y2)>=2y+3
已知x,y均为正数,且x>y,求证:2x+1/(x2-2xy+y2)>=2y+3
设x=y+z(z>0)
则原式=2(y+z)+1/(z^2)=2y+2z+1/(z^2)=2y+z+z+1/(z^2)
而(z+z+1/(z^2))/3》1(三项均值)
故原式=2y+z+z+1/(z^2)》2y+3