f=根号下x²-10x+34+根号下x²+4最小值是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:58:36
f=根号下x²-10x+34+根号下x²+4最小值是多少
xT[oG+XW.^ 6 ZU8Ą8vF,fgrq5Ιo|7L 9a?gԣ$39ASi8][tN_MA&߈ '9[sXz312hxzZzkn gU^kC"jm?Z͏*ne;.bZ`mⳉ964 SIqn1%`M,]l#z!œ]͌9~ dv]ܶB[؛[zo[w-~ |V_l^SBz/q>kݣ-cN;N2c\8Z_5:cI Vǟ^I9<cl?5JkumgЋS =`PnDfx]TA)w'B_Lݛ;!obi3X;Ez&pdg{CyvzoԡႡDp; Ycх>R0$0 .Xc_{blpz-c,E98nr]Ni`W˶~貉Z Wp gENN,o"b't~ni}@++~8kj"k.E\-: IQ-tqPwT]GMUoY5s|T׻OahO pŸ +\ꮖC3z/Ob-'1F?,݇ȭCY/,$dO$ )$&Gny~5PymvKQT2DQ~bE<$YR|ӔH_٨DQ~E/ EyI*."

f=根号下x²-10x+34+根号下x²+4最小值是多少
f=根号下x²-10x+34+根号下x²+4最小值是多少

f=根号下x²-10x+34+根号下x²+4最小值是多少
f=√(x^2-10x+34)+√(x^2+4)
=√[(x-5)^2+9]+√(x^2+4)
函数定义域为全体实数集R.
由均值不等式得,当x^2-10x+34=x^2+4时,f取得最小值.
此时x=3
fmin=2√13

f=√(x2-10x+34)+√(x2+4)
=√{(x-5)^2+9}+√(x2+4)
√{(x-5)^2+9}>1,√(x2+4)>1,
当√(x2+4)=√{(x-5)^2+9}时值最小
√(x2+4)=√{(x-5)^2+9}
x=3,f=√(x2-10x+34)+√(x2+4)取得最小值=2√13

【先说一下啊,我把你题目反过来了,交换了下位置,这你应该看得懂哈!】

                   【我的答案和他们不同,但是我的绝对是准确答案,应为考过】

解: f(x)=√(x^2+4)+√(x^2-10x+34)

   f(x)=√(x^2+2^2)+√[(5-x)^2+3^2]

     构造长方体ABCD-A'B'C'D',其中AB=2,BC=3,BB'=5,

   E为BB'上一点,(如图所示)

   设BE=x,则AE=√(x^2+2^2),C'E=√[(5-x)^2+3^2],

     所以f(x)=AE+EC'.

     这样问题就转化为在长方体ABCD-A'B'C'D'的棱BB'上找一点E,使折线AEC'的长度最短,

   展开侧面,使AB与B'C共面,

   连接AC',可得f(x)min=5√2.

     即函数f(x)=√(x^2+4)+√(x^2-10x+34)的最小值为5√2