若函数f(x)=(x-1)(x-2)(x-3)...(x-2011),f'(2011)=?f'(2011)=2010怎么求得的.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:46:31
若函数f(x)=(x-1)(x-2)(x-3)...(x-2011),f'(2011)=?f'(2011)=2010怎么求得的.
xVNA~\Yi>񢽀ƴ7$M]cIiSb"H*hZؕվݙ]x33.ZM 9; ^7EHnQ‘c9*22 E3#>gjEioujy9]@Kk/ ae>z1n8CR2/I0v!t'ŘD/zN&o kM sC tJ"%%EUd4^X9" +xBGվmVWgUt[znlms, ˂ {7̅V.\c&Lbr`c~^Xe黶ο4;&) l`[51g ̩"'a a1eg+SZ^W=afzM%FA%FKEN[9\M[iv6сi'9HD5{oA ]v{7kK&'}Qܸ-tb!#۬nV;ē8|v ڲ3ܥ w/f ݯ15ǿ7$яAH;%(m|;mB1b@Jmkp3p}kyn剾[g;*2v8"r4/q4\0UܚIa|^;tU*

若函数f(x)=(x-1)(x-2)(x-3)...(x-2011),f'(2011)=?f'(2011)=2010怎么求得的.
若函数f(x)=(x-1)(x-2)(x-3)...(x-2011),f'(2011)=?
f'(2011)=2010怎么求得的.

若函数f(x)=(x-1)(x-2)(x-3)...(x-2011),f'(2011)=?f'(2011)=2010怎么求得的.
f(x)=g(x)(x-2011),g(x)=(x-1)..(x-2010)
f'(x)=g'(x)(x-2011)+g(x)
f'(2011)=g(2011)=2010*2009**..1=2010!

f(x)=g(x)(x-2011), g(x)=(x-1)..(x-2010)
f'(x)=g'(x)(x-2011)+g(x)
f'(2011)=g(2011)=2010*2009**..1=2010!

f(x)=(x-1)(x-2)...(x-2010)(x-2011)=g(x)(x-2011).
f'(x)=g'(x)(x-2011)+g(x)
f'(2011)=g'(2011)(2011-2011)+g(2011)=g(2011)
g(x)=(x-1)(x-2)...(x-2010),
g(2011)=2010*2009*...*2*1=1*2*...*2009*2010=2010!
f'(2011)=g(2011)=2010![2010的阶乘]

设g(x)=x-1)(x-2)(x-3)...(x-2010)
f(x)=g(x)(x-2011)=g(x)x-2011g(x)
f(x)‘=g(x)’x+g(x)-2011g(x)‘=g(x)’(x-2011)+g(x)
f'(2011)=g(x)=1*2*3*。。。2010
阶乘符号不会打

f(x)=(x-1)(x-2)(x-3)...(x-2011)
由(f(x)*g(x))'=f'(x)g(x)+f(x)g'(x)得
f'(x)={[(x-1)(x-2)(x-3)……(x-2010)](x-2011)}'
=[(x-1)(x-2)(x-3)……(x-2010)]'(x-2011)+[(x-1)(x-2)(x-3)……(x-2010)]*(x-20...

全部展开

f(x)=(x-1)(x-2)(x-3)...(x-2011)
由(f(x)*g(x))'=f'(x)g(x)+f(x)g'(x)得
f'(x)={[(x-1)(x-2)(x-3)……(x-2010)](x-2011)}'
=[(x-1)(x-2)(x-3)……(x-2010)]'(x-2011)+[(x-1)(x-2)(x-3)……(x-2010)]*(x-2011)'
将x=2011带入,显然第一项中的x-2011=0
所以f'(2011)=(2011-1)(2011-2)(2011-3)……(2011-2010)
=2010*2009*2008*……*1
=2010!
其中2010!表示2010的阶乘,也就是从1,2,3,已知乘到2010.结果并不是2010~

收起

对f(x)求导就是分别对每一个括号求导,并且其他项不变,这是多项相乘的求导规则。观察一下式子,对(x-2011)这一项求导后该项变为1,带入2011后整个式子不为0(对其他任意项求导后都含(x-2011),结果都为0),所以结果为f'(2011)=(2011-1)(2011-2)...(2011-2010)=2010!...

全部展开

对f(x)求导就是分别对每一个括号求导,并且其他项不变,这是多项相乘的求导规则。观察一下式子,对(x-2011)这一项求导后该项变为1,带入2011后整个式子不为0(对其他任意项求导后都含(x-2011),结果都为0),所以结果为f'(2011)=(2011-1)(2011-2)...(2011-2010)=2010!

收起

f

f(x)=g(x)(x-2011), g(x)=(x-1)..(x-2010)
f'(x)=g'(x)(x-2011)+g(x)
f'(2011)=g(2011)=2010*2009**..1=2010!