若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.证明存在e属于(a,b).使得f(e)=e存在互异亮点n,p属于(a,b),使得f'(n)*f'(p)=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:57:42
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.证明存在e属于(a,b).使得f(e)=e存在互异亮点n,p属于(a,b),使得f'(n)*f'(p)=1
xՑN@_ŝ3qEeGݰD" "xB7 ̙ŠWp.`tg7;|s; 8PCepcb],  7cHy/E!TR=eu=&w:WFa yDLXѯE;*(8}g>)9rw

若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.证明存在e属于(a,b).使得f(e)=e存在互异亮点n,p属于(a,b),使得f'(n)*f'(p)=1
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.
证明存在e属于(a,b).使得f(e)=e
存在互异亮点n,p属于(a,b),使得f'(n)*f'(p)=1

若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.证明存在e属于(a,b).使得f(e)=e存在互异亮点n,p属于(a,b),使得f'(n)*f'(p)=1
(1) 令g(x)=f(x)-x在区间(a,b)内连续
g(a)=b-a>0
g(b)=a-b<0
所以必然存在一点e使得g(e)=0
即f(e)=e
(2)根据拉格朗日中值定理
至少存在f'(n)=(f(a)-f(e))/(a-e)=(b-e)/(a-e)
f'(p)=(f(b)-f(e))/(b-e)=(a-e)/(b-e)
即f'(n)*f'(p)=1

证明:函数f(x)在闭区间[a,b]上连续,a 设函数f(x)在闭区间[a,b]上连续,a 设函数f(x)在闭区间[a,b]上连续,a 设函数f(x),g(x)在区间[a,b]上连续,且f(a) 关于连续函数的一个简单问题有个定理是“若函数f在闭区间[a,b]上连续,则f在[a,b]上一致连续”...现在有个疑问,对于定义在[0.1,0.5]区间上的函数f(x)=1/x,f显然在定义区间上连续.按定理那么f就 函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B) 若函数f(x)在区间[a,b]上连续,则积分变上限函数就是f(x)在[a,b]上的一个原函数. 函数零点定义问题若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b) 证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一... 若函数f(x)在[a,b]上连续,a 若函数f(x)在[a,b]上连续,a 若函数f(x)在[a,b]上连续,a 函数在闭区间[a,b]上连续,在开区间(a,b)内可导,f(a)=f(b)=0,证明至少有一点x在(a,b)内,使得f(x)+X*f'(x)=0 一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b) 假设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,定积分b到a f(x)dx=0,证明在闭区间a,b上恒有f(x)恒=0 设函数f(x)闭在区间a,b上连续,而且f(x)大于等于0,∫b到a f(x)dx=0,证在闭区间a,b上恒有f(x)=0 设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c设函数f(x)在区间[a,b]上连续,在区间(a,b)内有二阶导数,如果f(a)=f(b)且存在c属于(a,b)使得f(c)>f(a)证明在(a,b)内至 用区间套定理证明连虚函数有界性定理:若f(x)在[a,b]上连续,则f(x)在[a,b]上有界