∫(0→π/2) [(sint)^4-(sint)^6] dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:47:57
∫(0→π/2) [(sint)^4-(sint)^6] dt
x){ԱZQۤ F řy%q&Bf )%6IE*/!gly>eœ Ovzں'{f=_w]4N!@WWd`BȔ ͔ [Lb 0g*4)[XX]XhcI!LQ:*57P N6e`9*2M F4QMda B.Fxi2)DRQkoV@f6yvJ

∫(0→π/2) [(sint)^4-(sint)^6] dt
∫(0→π/2) [(sint)^4-(sint)^6] dt

∫(0→π/2) [(sint)^4-(sint)^6] dt
这里用一个公式会简单些:∫ [0--->π/2] f(sinx)dx=∫ [0--->π/2] f(cosx)dx
∫[0→π/2] (sin⁴t-sin⁶t) dt
=∫[0→π/2] sin⁴t(1-sin²t) dt
=∫[0→π/2] sin⁴tcos²t dt
=1/2( ∫[0→π/2] sin⁴tcos²t dt+∫[0→π/2] sin²tcos⁴t dt )
=1/2 ∫[0→π/2] sin²tcos²t(sin²t+cos²t) dt
=1/2 ∫[0→π/2] sin²tcos²tdt
=1/8 ∫[0→π/2] sin²2tdt
=1/8 ∫[0→π/2] (1-cos4t)dt
=1/8(t-1/4sin4t) [0→π/2]
=π/16