已知直线L与函数f(x)=Inx的图象相切于点(1,0),且L与函数g(x)=1\2x的平方+mx+7\2(m
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:18:47
xN@_e^{MY( D7,"x D6
r.ؙª`ojiX!)ѫy2sqh(K#Aϗ>Fj֘U@Ƹ;Im"png^\Rv72+ޣmkI<떖/% )@@'iOKKEJu D0䠇A ʐ ;M (J/-==rK/@;(ƺ!)ƬEPFj7R=J ]
7Ņ:XhM{M9{_?ޝ& H-`Yvy{uFҕ1~̛wfsłeadu}8\/x`2
已知直线L与函数f(x)=Inx的图象相切于点(1,0),且L与函数g(x)=1\2x的平方+mx+7\2(m
已知直线L与函数f(x)=Inx的图象相切于点(1,0),且L与函数g(x)=1\2x的平方+mx+7\2(m
已知直线L与函数f(x)=Inx的图象相切于点(1,0),且L与函数g(x)=1\2x的平方+mx+7\2(m
构造函数来证明.
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)
构造函数来证明。
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln...
全部展开
构造函数来证明。
设h(x)=lnx-x+1(x>0),
求导得:h’(x)=1/x-1=(1-x)/x,
x>1时,h’(x)<0,函数递减;
0
所以x=1时函数取到极大值h(1)=ln1-1+1=0.
∴h(x)=lnx-x+1≤0,(x=1时取等号)
令x=(a+b)/(2a),
则有ln(a+b)/(2a)-(a+b)/(2a)+1<0,
ln(a+b)/(2a) <(a+b)/(2a)-1,
即ln(a+b)/(2a) <(b-a)/(2a).
收起