求解一道初等数论题求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:34:41
求解一道初等数论题求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
xT[OA+$>ߡiecII@J`(Pn[ 5R.OY(iLҤ;̜w.9DH߮Wg% _j{pZTv~E۹0?l(* ڣǦn|a=>q7zg7Yx>(#‹5~ sO (Թdn΋a,d+~dNBB[0VW*ZLH!3d2ǹa ?DsX5G+iz(U84 Q}Ke3R%K4tY̯8bY^ Նi&,$%ElE+NMMKYbuU'=0Xb9)v0dp m*X7dzTnF8mg |wM02)\PXAffAjDd `M(gfcΫg{Z?]D$P)m^NMfcmְJ&+I`.K'fȯH[`tMMc1<T*/JB3ӾBl` yh猥/KvY;EfY嚥s7lmAP"k;fo{L"FVO<

求解一道初等数论题求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
求解一道初等数论题
求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数

求解一道初等数论题求证当p大于3时 (p-1)![1+1/2+1/3+.+1/(p-1)]能被p的平方整除,p是质数
符号说明:
==指同余号≡.
a|:ba==0 mod bb|a
题:X=1+1/2+1/3+.+1/(p-1),求证(p-1)!X|:pp,p素>3
证:
X=(1+1/(p-1)) + (1/2+1/(p-2))+...+(...)
=p(1/(p-1)+1/(2(p-2))+...)
=p*Y
故只须证(p-1)!Y|:p
(p-1)!Y=sum(p-1)!/(i(p-i)),i=1,...,(p-1)/2
设 _i==(p-1)!/(i(p-i)) mod p (###)
由wilson定理:(p-1)!==-1 mod p
得 ii* _i==1 mod p
(这是ii是指i^2,_i见###式的指定)
依二次剩余相关理论,_i是p的二次剩余(易证,略)
并且,当i取遍1,2,...,(p-1)/2时,_i取遍p的二次剩余(易证,略).
显然二次剩余是成对的:
如果k是p的二次剩余,p-k必定也是.
从而:sum(_i)==sum(p的所有二次剩余)
==1+2^2+3^2+...+((p-1)/2)^2
=((p-1)/2)((p-1)/2+1)(2*((p-1)/2)+1)/6
=(p-1)/2*(p+1)/2*p/6
当p是6的约数,即p=2,3时,代入p值可得知上式不能被p整除.
在其他情况下,显然sum (_i)==0 mod p
从而原命题得证.