线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:27:40
线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零
xTKOQ+,!(MM.ԶKc cPX+*H}A@1g+BϽGLM!s9sgv9ֱ֡]f׼cm6^ե);Zԫ(NcaR&5] Moo@^a)N7ѕWrSV..avp{X1QsY!,l0 fϹ gsJ|J;*2>|^bʟL iȞy@ED4D5C +^r'P깝5g{Tooz >

线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零
线性代数方程组若干问题
1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?
2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?
3.设三阶矩阵A的特征值为2,1,非零矩阵B满足BA=O,则r(B)=?

线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零
第一题楼上已给出解答,第二题应该有问题
第三题r(B)=1
取B的三个特征值对应的的特征向量分别为a,b,c(均为列向量),由于他们分别对应不同特征值,可见他们是两两线性无关的,同时可以选取他们均不为0
于是A(a b c)=(2a b 0)
两边左乘B得
BA(a b c)=B(2a b 0)
即0=B(2a b 0)下面可以从几何的角度
取B的行向量分别为d,e,f
上式成立则必有d,e,f均同时与a,b正交,而a,b不共线,唯一决定一个平面,从而d,e,f均为该平面的法向量,于是有d,e,f共线,于是B的秩不大于1,又B不为0,r(B)>0
于是r(B)=1
这一题也可以简单做,因为A的三个特征值都给出了,可以取一个特殊的情况,即取A为(2 0 0,0 1 0,0 0 0),于是可知B前两个列向量都是0向量,又B不为0,从而有r(B) =1

1的解为x1=x2=......=xn-1=xn=1。
第二题貌似题目有问题,r(A)=3,Ax=O无非零解。

线性代数方程组若干问题1.设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=O的通解为?2.设A=[1,2,-3;4,t,3;3,1,1;-1,-7,-13],B为三阶非零矩阵,且AB=O,则t=?3.设三阶矩阵A的特征值为2,1,非零 【线性代数】设n阶矩阵A的行列式|A|=d≠0,求|A*|A的伴随矩阵 线性代数:设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0 线性代数,设A是(n≥2)阶方阵,证明A*是A的伴随矩阵,r(A*)=1的充要条件是r(A)=n-1. 设A为n阶矩阵,证明r(A^n)=r(A^(n+1))线性代数 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 线性代数证明题 设n阶方阵A满足A*(A的的转置矩阵)=E,切|A| 线性代数——线性方程的解得判断1.对于非齐次线性方程Ax=b,A是m*n阶矩阵,设R(A)=r,判断下列说法的正确与否并给出理由(1)r=m时,方程组有解(2)r=n时,方程组有唯一解2.A是m*n阶矩阵,Ax=0是Ax 线性代数 设A,B,C均为n阶矩阵,I为n阶单位矩阵,且ABC=I,则下列矩阵乘积一定等于I的是哪个?1.ABC2.BAC3.CAB4.CBA1.ACB2.BAC3.CAB4.CBA 线性代数:设n阶矩阵A与B相似且可逆,则|A乘B逆|=?怎么算的? 线性代数初学者:分块矩阵的伴随矩阵题目设n阶矩阵A和s阶矩阵B可逆,求 矩阵 A O ^-1 ( ) C B 不怎么会打,就是求它的逆矩阵 线性代数:若n阶矩阵A的秩r 线性代数:如果n阶矩阵A的秩r 线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.注,(E+A)^(-1)表示(E+A)的逆 证明 线性代数 线性相关 (6)设 A 是 n 阶可逆矩阵,A*是 A 的伴随矩阵,证明(A*)^(-1)=(A^(-1))* 看看这个线性代数证明题咋证明啊?设m*n阶矩阵A的秩为m,n*(n-m)阶矩阵B的秩为n-m,又AB不=0,向量(阿尔法)是齐次方程组Ax=0的一个解向量,证明:存在唯一的一个n-m维列向量(贝塔)使(阿尔法 线性代数 设A为n阶矩阵,|A|=5,A+3E不可逆,求伴随矩阵A*的一个特征值 线性代数 A为n阶矩阵