线性代数:4、实对称矩阵的对角化问题.例、试求一个正交矩阵P ,将化为对角矩阵...最好有步骤,可以写好了拍照发给我,...答的好有追加...

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:43:04
线性代数:4、实对称矩阵的对角化问题.例、试求一个正交矩阵P ,将化为对角矩阵...最好有步骤,可以写好了拍照发给我,...答的好有追加...
xR]kP+ a:9IJS(^x'NNtEvɦ`"BGhN^V?6_{ozWl⺇+ǧ~[{Iy9[턙A6\{l,.[Q=,4gMzkA}p9[̘UD~lħs28Zr=0PԪ1T\E,J)9\ M$5g| H*d)mʪi!(.ӶfE bS6e#NE Â"BXOٺ*PK w+T}%-i.%Mh!YH)Z?Xf͝ot:ej{b~ ,[(NiU4RI-&°L`y@xc2v1'y6 mH8Lf{B{ 9%i GdžaV;|v'/ah0TbnrX~2u ( !p:l iA#XOtlP7_2/-RQ'“ZjlZ1F w'іU

线性代数:4、实对称矩阵的对角化问题.例、试求一个正交矩阵P ,将化为对角矩阵...最好有步骤,可以写好了拍照发给我,...答的好有追加...
线性代数:4、实对称矩阵的对角化问题.
例、


试求一个正交矩阵P ,将化为对角矩阵...最好有步骤,可以写好了拍照发给我,...答的好有追加...

线性代数:4、实对称矩阵的对角化问题.例、试求一个正交矩阵P ,将化为对角矩阵...最好有步骤,可以写好了拍照发给我,...答的好有追加...
|A-λE|
2-λ -1 1
-1 2-λ -1
1 -1 2-λ
c1-c3
1-λ -1 1
0 2-λ -1
λ-1 -1 2-λ
r3+r1
1-λ -1 1
0 2-λ -1
0 -2 3-λ
= (1-λ)[(2-λ)(3-λ)-2]
= (1-λ)(λ^2-5λ+4)
= (1-λ)(λ-1)(λ-4)
所以 A 的特征值为 1,1,4.
(A-E)x=0 的基础解系为 a1=(1,1,0)^T,a2=(1,-1,-2)^T (正交)
(A-4E)x=0 的基础解系为 a3=(1,-1,1)^T
将a1,a2,a3单位化构成P=
1/√2 1/√6 1/√3
1/√2 -1/√6 -1/√3
0 -2/√6 1/√3
则P为正交矩阵,且 P^-1AP=diag(1,1,4).