已知{bn}为等比数列,b5=2,则b1b2b3…b9=2的9次.若{an}为等差数列,a5=2,则{an}的类似结论为( ) A.a1a2a3…a9=2的9次 B.a1+a2+…+a9=2的9次 C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9 ——————要依据和过程————谢谢
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:25:57
x){}Kj|mSMcNӎIIFIƏ%Y=blBKazn_Փ*}q={b.R
MGDDDyډF@amdqgr-\5LAC/5>7Yﺧz^oEv" I*ҧ KbX[% /3f**X&$فB 6
已知{bn}为等比数列,b5=2,则b1b2b3…b9=2的9次.若{an}为等差数列,a5=2,则{an}的类似结论为( ) A.a1a2a3…a9=2的9次 B.a1+a2+…+a9=2的9次 C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9 ——————要依据和过程————谢谢
已知{bn}为等比数列,b5=2,则b1b2b3…b9=2的9次.若{an}为等差数列,a5=2,则{an}的类似结论为( )
A.a1a2a3…a9=2的9次
B.a1+a2+…+a9=2的9次
C.a1a2…a9=2×9
D.a1+a2+…+a9=2×9
——————要依据和过程
————谢谢
已知{bn}为等比数列,b5=2,则b1b2b3…b9=2的9次.若{an}为等差数列,a5=2,则{an}的类似结论为( ) A.a1a2a3…a9=2的9次 B.a1+a2+…+a9=2的9次 C.a1a2…a9=2×9 D.a1+a2+…+a9=2×9 ——————要依据和过程————谢谢
D
a1+a2+...+a9 = 9a5
已知bn为等比数列,且bn>0,b2*b4=2b3*b5=b4*b6=25,求b3+b5的值
已知{Bn}为等比数列,B5=2,则B1*B2*B3*B4*B5*B6*B7*B8*B9=2^9.若{An}为等差数列,A5=2,则{An}的类似结论问题接着上面——类似结论为? 请给出详细解答步奏和分析
已知等差数列{an}是首项a1>1,公比q>0的等比数列,设bn=log2(an)(n属于N+)且b1+b3+b5=6,b1*b3*b5=0(1)求{an}的通项公式;(2)设{bn}的前项n和为Sn,当S1/1+S2/2+...+Sn/n最大时,求n的值
已知数列{bn},b1=1,b(n+1)=2bn+1,求证{bn}为等比数列.
已知数列{bn},b1=1,b(n+1)=2bn+1,求证数列{bn}为等比数列.
在等比数列{an}中,a1大于1,公比q大于0,设bn=log以2为底an,且b1+b3+b5=6,b1*b3*b5=0.试比较an与sn的大小
数列{an}为公差d不等于0的等差数列,数列{bn}是等比数列,若a1=b1,a3=b3,a7=b5,则b11=?
等差数列{an}与等比数列{bn}满足:a1=b1>0,a5=b5,则a3与b3的大小关系为:
设数列an为等比数列,数列bn满足bn=na1+(n-1)a2+...+2an-1+an已知b1=1,b2=4求(1)数列{an}的首项和公比.(2)bn.(3)b1+b3+b5+b7+...+b2n-1
已知数列an为等比数列,bn=log1/2an,b2+b4=12,b3+b5=16,求数列bn的通项公式
等比数列{bn}中,(1)b1+b2=30,b3+b4=120,求b5+b6
等比数列bn中,b1+b2=30,b3+b4=120,求b5+b6
等比数列{bn}中,b6-b5=567,b2-b1=7.求Sn
已知数列an为等差数列,公差d≠0,bn为等比数列,公比为q,若a1=b1,a3=b3,a7=b5,且an=bm,求m与n的关系式
已知数列[an]为等差数列,公差d≠0;[bn]为等比数列,公比为q,若a1=b1,a3=b3,a7=b5,且an=bm,求n与m的关系式
已知数列an bn都是等差数列(a1+a2+...+an)/(b1+b2+...+bn)=7n+2/n+3 求a5/b5求a5/b5!
等比数列证明题 急已知bn=2/(n*n+n),求证:b1+b2+...+bn
数列{an}的首项为1,数列{bn}为等比数列且bn=a(n+1)/an,若b4·b5=2,则a9=